
10/12/15	

1	

Detailed Design

N.Meng,	
 B.Ryder	
 1	

Overview

•  What is detailed design?
•  What is OO design?
•  How should we do OO design?

N.Meng,	
 B.Ryder	
 2	

10/12/15	

2	

Detailed Design

•  To decompose subsystems into modules
•  Two approaches of decomposition
–  Procedural
•  system is decomposed into functional modules

which accept input data and transform it to
output data
•  achieves mostly procedural abstractions

– Object-oriented
•  system is decomposed into a set of

communicating objects
•  achieves both procedural + data abstractions

N.Meng,	
 B.Ryder	
 3	

Abstraction

•  To focus on important, inherent properties
while suppressing unnecessary details
–  Permits separation of concern
– Allows postponement of design decision

•  Two abstraction mechanisms
–  Procedural abstraction

•  Specification describes input/output
•  Implementation describes algorithm

– Data abstraction
•  Specification describes attributes, values
•  Implementation describes representation and

manipulation

N.Meng,	
 B.Ryder	
 4	

10/12/15	

3	

OOD

•  To identify responsibilities and assign them
to classes and objects

•  Responsibilities for doing
– E.g., create an object, perform calculations,

invoke operations on other objects
•  Responsibilities for knowing
– E.g., attributes, data involved in calculations,

parameters when invoking operations

N.Meng,	
 B.Ryder	
 5	

How Do Developers Design Objects?

•  Code
– Design-while-coding, ideally with power

tools such as refactorings. From mental
model to code

•  Draw, then code
– UML Diagrams

•  Only draw
– The tool generates everything from

diagrams

N.Meng,	
 B.Ryder	
 6	

10/12/15	

4	

How Much Time Spent Drawing UML
before Coding?

•  Spend a few hours or at most one day (with
partners) near the start of the iteration

•  Draw UML for the hard, creative parts of
the detailed object design

•  Stop and transition to coding
•  UML drawings
–  inspiration as a starting point
–  the final design in code may diverge and improve

N.Meng,	
 B.Ryder	
 7	

Work Results

•  Dynamic models
– help design the logic or behaviors of the code
– UML interaction diagrams
•  (Detailed) sequence diagrams, or
•  Communication diagrams

•  Static models
– help design the definition of packages, class

names, attributes, and method signatures
– (Detailed) UML class diagrams

N.Meng,	
 B.Ryder	
 8	

10/12/15	

5	

Guidelines

•  Spend significant time doing interaction
diagrams, not just class diagrams

•  Apply responsibility-driven design and
GRASP principles to dynamic modeling

•  Do static modeling after dynamic
modeling

N.Meng,	
 B.Ryder	
 9	

UML Interaction Diagrams

•  To illustrate how objects interact via
messages

•  Two types of interaction diagrams
– Sequence diagrams
– Communication diagrams

N.Meng,	
 B.Ryder	
 10	

10/12/15	

6	

Sequence diagram

•  Illustrate interactions in a kind of fence
format, in which each new object is
added to the right

N.Meng,	
 B.Ryder	
 11	

doTwo

doThree

:A myB: B

doOne

What Is The Possible Representation
in Code?

N.Meng,	
 B.Ryder	
 12	

public class A
{
 private B myB = new B();
 public void doOne()
 {
 myB.doTwo();
 myB.doThree();
 }
}

10/12/15	

7	

Communication Diagram

•  To illustrate object interactions in a
graph or network format, in which
objects can be placed anywhere on the
diagram

N.Meng,	
 B.Ryder	
 13	

: A doOne

1: doTwo

myB: B
2: doThree

Sequence vs. Communication

•  Sequence diagram
– Tool support is better and more notation

options are available
– Easier to see the call flow sequence

•  Communication diagram
– More space-efficient
– Modifying wall sketches is easier

N.Meng,	
 B.Ryder	
 14	

10/12/15	

8	

How Should We Do OO Design?

•  Responsibility-driven design (RDD)
– Think about how to assign responsibilities

to collaborating objects
– Think about following questions
•  What are the responsibilities of an object?
•  Who does it collaborate with?
•  What design patterns should be applied?

N.Meng,	
 B.Ryder	
 15	

Responsibilities

•  Obligations or behaviors of an object in
terms of its role

•  Two types of responsibilities:
– Doing responsibilities
– Knowing responsibilities

N.Meng,	
 B.Ryder	
 16	

10/12/15	

9	

Doing Responsibilities

•  Doing something itself, such as creating
an object or doing a calculation
– “a Sale object is responsible for creating

its SalesLineItem objects”
•  Initiating action in other objects
•  Controlling and coordinating activities in

other objects

N.Meng,	
 B.Ryder	
 17	

Self-behaviors and collaborations or
interactions with others

Guideline

•  The transition of responsibilities into
classes and methods is influenced by the
granularity of the responsibility
– Big responsibilities take hundreds of classes

and methods
•  “provide access to relational databases” may involve

two hundred classes and thousands of methods
– Little responsibilities take one method
•  “create a Sale” may involve only one method in one

class

N.Meng,	
 B.Ryder	
 18	

10/12/15	

10	

Knowing Responsibilities

•  Knowing about private encapsulated data
•  Knowing about related objects
•  Knowing about things it can derive or

calculate
– “a Sale object is responsible for knowing its

total”

N.Meng,	
 B.Ryder	
 19	

Self-data and relevant objects/data

Guideline

•  The attributes and associations illustrated by
domain objects in a domain model often
inspire the responsibilities
– If the domain model Sale class has a time

attribute, it’s natural that a software Sale
class knows its time.

– Design classes do not always have identical
attributes as domain classes

N.Meng,	
 B.Ryder	
 20	

10/12/15	

11	

GRASP: A Methodical Approach to OOD

•  Principles (Patterns) to guide choices
about assigning responsibilities
– Creator
– Information expert
– Low coupling
– Controller
– High cohesion

•  Applicable to design and implementation

N.Meng,	
 B.Ryder	
 21	

Principle 1: Creator (doing)

•  Problem: Who creates an A?
•  Advice: Assign class B the responsibility

to create an instance of class A if:
– B “contains” or compositely aggregates A
•  Whole-part; Assembly-part (e.g., body-leg)

– B records A
– B closely uses A
– B has the initializing data for A

N.Meng,	
 B.Ryder	
 22	

10/12/15	

12	

Example

•  Who should be responsible for creating
a SalesLineItem?

•  Sale aggregates SalesLineItem objects

N.Meng,	
 B.Ryder	
 23	

 :Register

makeLineItem(quantity)

 :Sale

:Sales
LineItem

create(quantity)

Summary

•  Usually, the container or recorder of
objects are creators

•  Contraindications: complex creation
– E.g. using recycled objects for performance
•  Both trucks and buses aggregate tires, so apply

a Factory pattern to get instead of creating
tires

N.Meng,	
 B.Ryder	
 24	

10/12/15	

13	

Principle 2: Information Expert
(knowing)

•  Problem: Who knows the information to
fulfill a responsibility?

•  Advice: Assign the responsibility to
class A if the information:
–  is about A’s attributes
–  is derivable by A, sometimes may depend on

some attributes of relevant classes

N.Meng,	
 B.Ryder	
 25	

Example

•  Who knows the information about a
Sale’s total amount of money?

N.Meng,	
 B.Ryder	
 26	

Sale
date
time

getTotal()

10/12/15	

14	

Example

•  Who knows the information about a Sale
line item’s subtotal?

N.Meng,	
 B.Ryder	
 27	

Sales
LineItem
quantity

getSubtotal()

Example

•  Who knows the information of an item’s
price?

N.Meng,	
 B.Ryder	
 28	

Product
Specification
description

price
itemID

getPrice()

10/12/15	

15	

Summary

•  Objects fulfill tasks using their info or
the info of objects they know of

•  It is crucially important to separate
concerns between collaborative objects
– E.g., getTotal() & getSubTotal()
– Related to low coupling and high cohesion

(discuss later)

N.Meng,	
 B.Ryder	
 29	

Principle 3: Low Coupling (relations)

•  Problem: How to reduce the impact of
change?

•  Advice: put data and operations
together
– Goal: Avoid unnecessary coupling

N.Meng,	
 B.Ryder	
 30	

10/12/15	

16	

Examples of Coupling

N.Meng,	
 B.Ryder	
 31	

•  Class A has an attribute (field) of class B
•  An instance of A calls an instance of B
•  A has a method that references B instances
–  local variable/parameter/return value is a

reference (i.e., pointer) to a B object
•  A is a direct or indirect subclass of B

Example: Two Alternatives

N.Meng,	
 B.Ryder	
 32	

 :Register makePayment(x) p:Payment

2:addPayment(p)

1: create(x)

: Sale

 :Register makePayment(x)

:Payment

makePayment(x)

create(x)

:Sale

10/12/15	

17	

The second is better

•  Sale needs to know payment. The
coupling is always there.

•  Register simply delegates Sale to create
the payment, without creating the
payment itself

N.Meng,	
 B.Ryder	
 33	

Principle 4: Controller (doing)

•  Problem: What first object beyond the UI
layer receives and coordinates (“controls”)
a system operation?

•  Advice: Assigns “control” to class A if it is:
– Facade controller: a class representing the

entire system or device
– Use case controller: a class representing a use

case within which the event occurs
•  E.g., XyzHandler, XyzCoordinator, XyzSession

– Xyz=name of the use case

N.Meng,	
 B.Ryder	
 34	

10/12/15	

18	

Example

•  System events in POS system
– endSale(), enterItem(), makeNewSale(),

makePayment(), …
– Typically generated by the GUI

N.Meng,	
 B.Ryder	
 35	

:SaleWindow

:???

enterItem(itemID,qty)

User Interface Layer

Domain Layer

Using Facade Controller

•  Facade controller: entire system/device
– POS_System, Register

•  Used when there are NOT too many
system events
– Avoid “bloated” controllers (e.g., too many

responsibilities)

N.Meng,	
 B.Ryder	
 36	

10/12/15	

19	

Using Use-case Controllers

•  Use-case controller: handler for all
system events in a use case

•  Used when there are MANY system
events
– Several manageable controller classes
– Track the state of the current use-case

scenario

N.Meng,	
 B.Ryder	
 37	

Principle 5: High Cohesion (relations)

•  Problem: How to keep object focused,
and manageable?

•  Advice: DON’T put too much data and
operations into the same class
– Goal: avoid unnecessary responsibilities

N.Meng,	
 B.Ryder	
 38	

10/12/15	

20	

Example

•  Who creates Payment objects?

•  If Register does the work for all system
events, it will become bloated and not
cohesive

N.Meng,	
 B.Ryder	
 39	

 :Register makePayment()

 :Sale

1:create()

2: addPayment(p)

p:Payment

A better solution: delegation

•  Our better solution: delegate Payment
creation to Sale
– Higher cohesion for Register
– Also reduces coupling

N.Meng,	
 B.Ryder	
 40	

 :Register makePayment()

:Payment

 makePayment()

 create()

:Sale

10/12/15	

21	

Rule of thumb

•  Class with high cohesion has relatively
small number of methods with highly
related functionality, and does not do
too much work (LAR, p 317)

N.Meng,	
 B.Ryder	
 41	

Benefits

•  Clear separation of concerns
– Easy to comprehend, reuse, and maintain

•  Often results in low coupling
•  Contraindications:
– Distributed server objects need to be larger,

w/ coarse-grained operations
•  Reduces the number of remote calls

– To simplify maintenance by an expert
developer

N.Meng,	
 B.Ryder	
 42	

