
10/5/15	

1	

High-level Design

Overview

•  What is software architecture?
•  Classic architecture styles
•  UML Package Diagram
•  How to do architecture Design?

N.	
 Meng,	
 B.	
 Ryder	
 2	

10/5/15	

2	

What is Software Architecture?

•  “The architecture of a system is
comprehensive framework that
describes its form and structure -- its
components and how they fit together”
 --Jerrold Grochow

N.	
 Meng,	
 B.	
 Ryder	
 3	

What is Architectural Design?

•  Design overall shape & structure of system
– the components
– their externally visible properties
– their relationships

•  Goal: choose architecture to reduce risks in
SW construction & meet requirements

N.	
 Meng,	
 B.	
 Ryder	
 4	

10/5/15	

3	

SW Architectural Styles

•  Architecture composed of
– Set of components
– Set of connectors between them

•  Communication, co-ordination, co-operation
– Constraints

•  How can components be integrated?
– Semantic models

•  What are the overall properties based on
understanding of individual component properties?

N.	
 Meng,	
 B.	
 Ryder	
 5	

Architecture Patterns

•  Common program structures
– Pipe & Filter Architecture
– Event-based Architecture
– Layered Architecture
– Map-Reduce Architecture

N.	
 Meng,	
 B.	
 Ryder	
 6	

10/5/15	

4	

Pipe & Filter Architecture

•  A pipeline contains a chain of data
processing elements
– The output of each element is the input of the

next element
– Usually some amount of buffering is provided

between consecutive elements

N.	
 Meng,	
 B.	
 Ryder	
 7	

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe
pipe

pipe

pipe

pipe pipe

pipe

Data

Example: Optimizing Compiler

N.	
 Meng,	
 B.	
 Ryder	
 8	

Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]

Compiler Structure

IR	

O
pt
	
 1
	

O
pt
	
 2
	

O
pt
	
 n
	

…	

IR	

10/5/15	

5	

Pros and Cons

•  Other examples
– UNIX pipes, signal processors

•  Pros
– Easy to add or remove filters
– Filter pipelines perform multiple operations

concurrently
•  Cons

– Hard to handle errors
– May need encoding/decoding of input/output

N.	
 Meng,	
 B.	
 Ryder	
 9	

Event-based Architecture

N.	
 Meng,	
 B.	
 Ryder	
 10	

EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

•  Promotes the production, detection,
consumption of, and reaction to events

•  More like event-driven programming

10/5/15	

6	

Example: GUI

N.	
 Meng,	
 B.	
 Ryder	
 11	

Pros and Cons

•  Other examples:
– Breakpoint debuggers, phone apps, robotics

•  Pros
– Anonymous handlers of events
– Support reuse and evolution, new consumers

easy to add
•  Cons

– Components have no control over order of
execution

N.	
 Meng,	
 B.	
 Ryder	
 12	

10/5/15	

7	

Layered/Tiered Architecture

•  Multiple layers are defined to allocate
responsibilities of a software product

•  The communication between layers is
hierarchical

•  Examples: OS, network protocols

N.	
 Meng,	
 B.	
 Ryder	
 13	

kernalkernel

utilities
application layer

users

Variant architectures

•  2-layer architecture
– Client-Server Architecture

•  Data-centric Architecture

•  3-layer architecture
– Model-View-Controller

N.	
 Meng,	
 B.	
 Ryder	
 14	

10/5/15	

8	

Client-Server Architecture

N.	
 Meng,	
 B.	
 Ryder	
 15	

•  Partition tasks or workloads between the
providers and consumers of service or data

•  Same system, different hardware, network
communication

•  Thin or thick clients

Data-centric Architecture

•  A data store resides at the center to be
accessed frequently by agents

•  Blackboard sends notification to
subscribers when data of interest changes

•  Compared with event-driven architecture?
N.	
 Meng,	
 B.	
 Ryder	
 16	

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

10/5/15	

9	

2-layer: Examples, Pros and Cons

•  Examples
– Web-based applications, Distributed file

system, version control system
•  Pros

– Low requirements for agents
– Easy to add/change agents

•  Cons
– Blackboard can be a bottleneck
– Data integrity

N.	
 Meng,	
 B.	
 Ryder	
 17	

3-layer Architecture

N.	
 Meng,	
 B.	
 Ryder	
 18	

Data

Presentation

Logic

•  Presentation: UI to interact with users
•  Logic: coordinate applications and perform

calculations
•  Data: store and retrieve information as

needed

10/5/15	

10	

Example: Online Ordering System

N.	
 Meng,	
 B.	
 Ryder	
 19	

http://www.cardisoft.gr/frontend/article.php?aid=87&cid=96

Model-View-Controller

N.	
 Meng,	
 B.	
 Ryder	
 20	

https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
Design of Finite State Machine Drawing Tool

10/5/15	

11	

Key Points about MVC

•  View layer should not handle system
events

•  Controller layer has the application logic
to handle events

•  Model layer only respond to data
operation

N.	
 Meng,	
 B.	
 Ryder	
 21	

3 layer: Pros and Cons

•  Pros
– Clear separate concerns

•  Easy to develop, change & reuse

•  Cons
– Hard to maintain when changes in one layer

can affect other layers

N.	
 Meng,	
 B.	
 Ryder	
 22	

10/5/15	

12	

Layered Architecture: Pros and Cons

•  Pros
– Support increasing levels of abstraction

during design
– Support reuse and enhancement

•  Cons
– The performance may degrade
– Hard to maintain

N.	
 Meng,	
 B.	
 Ryder	
 23	

Hadoop Map-Reduce

•  Open source project written in Java
•  Large scale distributed data processing
•  Based on Google’s Map Reduce

framework and Google file system
•  Work on commodity hardware
•  Used by Google, Yahoo, Facebook,

Amazon, and many startups

N.	
 Meng,	
 B.	
 Ryder	
 24	

http://www.slideshare.net/acmvnit/hadoop-map-reduce

10/5/15	

13	

Hadoop Core

•  Hadoop Distributed File System (HDFS)
– Distributes and stores data across a

cluster
•  Hadoop Map Reduce(MR)

– Provides a parallel programming model
– Moves computation to where the data is
– Handles scheduling, fault tolerance
– Status reporting and monitoring

N.	
 Meng,	
 B.	
 Ryder	
 25	

Word Count Problem

•  Find the frequency of each word in a
given corpus of documents

•  Trivial for small data
•  How to process more than a TB of data?

– Doing it on one machine is very slow
•  Good news: it can be parallelized across

number of machines
•  Strategy: Divide-and-conquer

N.	
 Meng,	
 B.	
 Ryder	
 26	

10/5/15	

14	

Map Reduce Architecture

•  Programmer submits job (mapper, reducer,
input) to Job tracker

•  Job tracker, splits input data, schedules and
monitors various map and reduce tasks

•  Task tracker executes map and reduce
tasks

N.	
 Meng,	
 B.	
 Ryder	
 27	

Jobtracker

tasktrackertasktrackertasktracker

Input Job (mapper,
reducer, input)

Data transfer

Assign tasks

Map Reduce Programming Model

•  Inspired by functional language primitives
•  map f list : applies a given function f to each

element of a list and returns a new list
 map square [1 2 3 4 5] = [1 4 9 16 25]

•  reduce g list : combines elements of list
using function g to generate a new value
 reduce sum [1 2 3 4 5] = [15]

•  Map and reduce do not modify input
N.	
 Meng,	
 B.	
 Ryder	
 28	

10/5/15	

15	

Mapper and Reducer

•  Mapper
–  Input: records(database rows etc.)

represented as key/value pairs
–  Output: one or more intermediate key/value

pairs for each input
•  Reducer

–  Input: intermediate key/value pairs
–  Output: final key/value pairs based on

combination of input pairs

N.	
 Meng,	
 B.	
 Ryder	
 29	

Word Count Map Reduce Job

•  Mapper
– Input: <key:offset, value: a line of a document>
– Output: <key:word, value: count in the line>

•  Reducer
– Input: <key: w, value: count>
– Output: <key: w, value: count>

N.	
 Meng,	
 B.	
 Ryder	
 30	

Σ

10/5/15	

16	

Map, Shuffle & Sort, Reduce

N.	
 Meng,	
 B.	
 Ryder	
 31	

Shuffle & Sort

•  Partition Map-output by hashing the key
– Same keyed pairs are put together

•  Number of partitions is equal to number
of reducers

•  Partitions are sorted by keys

N.	
 Meng,	
 B.	
 Ryder	
 32	

10/5/15	

17	

N.	
 Meng,	
 B.	
 Ryder	
 33	

•  Job tracker
– Splits input and assigns to tasktrackers
– Schedules and monitor map tasks (heartbeat)
– On completion, schedule reduce tasks

•  Task tracker
– Execute map tasks
– Partition and sort map outputs
– Execute reduce tasks

Jobtracker

tasktrackertasktrackertasktracker

Input Job (mapper,
reducer, input)

Data transfer

Assign tasks

Revisit Map Reduce Architecture

Usage

•  Map-Reduce greatly simplifies writing
large scale distributed applications

•  Used for building search index at
Google, Amazon

•  Widely used for analyzing user logs,
data warehousing and analytics

•  Also used for large scale machine
learning and data mining applications

N.	
 Meng,	
 B.	
 Ryder	
 34	

10/5/15	

18	

Pros

•  Locality
– Job tracker divides tasks based on location of

data
•  Parallelism
•  Fault tolerance

– Job tracker maintains a heartbeat with task
trackers

– Failures are handled by reexecution

N.	
 Meng,	
 B.	
 Ryder	
 35	

Cons?

N.	
 Meng,	
 B.	
 Ryder	
 36	

10/5/15	

19	

How to Do Architecture Design?

•  When decomposing a system into
subsystems, take into consideration
– how subsystems share data

•  data-centric or data-distributed
– how control flows between subsystems

•  as scheduled or event-driven
– how they interact with each other

•  via data or via method calls

N.	
 Meng,	
 B.	
 Ryder	
 37	

