High-level Design

Overview

What is software architecture?
Classic architecture styles
UML Package Diagram

How to do architecture Design?

N. Meng, B. Ryder

10/5/15

10/5/15

What is Software Architecture?

* "The architecture of a system is
comprehensive framework that
describes its form and structure -- its
components and how they fit together”

--Jerrold Grochow

What is Architectural Design?

* Design overall shape & structure of system
— the components
—their externally visible properties
— their relationships

* Goal: choose architecture to reduce risks in
SW construction & meet requirements

SW Architectural Styles

* Architecture composed of
— Set of components
— Set of connectors between them
« Communication, co-ordination, co-operation
— Constraints
* How can components be integrated?

— Semantic models

« What are the overall properties based on
understanding of individual component properties?

Architecture Patterns

« Common program structures
— Pipe & Filter Architecture
— Event-based Architecture
— Layered Architecture
— Map-Reduce Architecture

10/5/15

Pipe & Filter Architecture

- pipe - ipe :
Data i fiter 2R ——pipe

pipe | filter [

T ipe ,
PP° pipe ; —
.
pipe

« A pipeline contains a chain of data
processing elements

— The output of each element is the input of the
next element

— Usually some amount of buffering is provided
between consecutive elements

N. Meng, B. Ryder 7

Example: Optimizing Compiler

Source frontEnd 2| Optimizer |-R-| BackEnd || Targer
Program Program

Compiler Structure

Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]
N. Meng, B. Ryder 8

10/5/15

10/5/15

Pros and Cons

* Other examples

— UNIX pipes, signal processors
* Pros

— Easy to add or remove filters

— Filter pipelines perform multiple operations
concurrently

e Cons

— Hard to handle errors
— May need encoding/decoding of input/output

N. Meng, B. Ryder

Event-based Architecture
|EventEmitter| — event

= —» subscription

. xI EventDispatcher |- N

~
// t ~
s 1 \\
-’ I N

L.
| EventConsumerl | EventConsumerl | EventConsumerl

* Promotes the production, detection,
consumption of, and reaction to events

* More like event-driven programming

N. Meng, B. Ryder 10

Example: GUI

x

@ accountNumber

= |
firstName

l |

lastName

l |

phone
() - |
balance

I |

N. Meng, B. Ryder 11

Pros and Cons

* Other examples:

— Breakpoint debuggers, phone apps, robotics
* Pros

— Anonymous handlers of events

— Support reuse and evolution, new consumers
easy to add

e Cons

— Components have no control over order of
execution

N. Meng, B. Ryder 12

10/5/15

Layered/Tiered Architecture

Multiple layers are defined to allocate
responsibilities of a software product

The communication between layers is
hierarchical

Examples: OS, network protocols

Variant architectures

2-layer architecture

— Client-Server Architecture
» Data-centric Architecture

3-layer architecture
— Model-View-Controller

10/5/15

Client-Server Architecture
SN

D /\7 Internet) O
Clients ~——/ L
l;li Server

« Partition tasks or workloads between the
providers and consumers of service or data

« Same system, different hardware, network
communication

« Thin or thick clients

Data-centric Architecture

agentx\\\ ’//'agent
blackboard i
agent [—— (shared l—T agent
data)
agent’/) \\‘agent

« A data store resides at the center to be
accessed frequently by agents

* Blackboard sends notification to
subscribers when data of interest changes

« Compared with event-driven architecture?

10/5/15

2-layer: Examples, Pros and Cons

« Examples

— Web-based applications, Distributed file
system, version control system

* Pros
— Low requirements for agents
— Easy to add/change agents
 Cons
— Blackboard can be a bottleneck
— Data integrity

3-layer Architecture
| Presentation |

Egic
| Data |

* Presentation: UI to interact with users

* Logic: coordinate applications and perform
calculations

« Data: store and retrieve information as
needed

10/5/15

Example: Online Ordering System

Client Computer Client Computer
Client Tier Order Processing Order Processing
Rich Interface Rich Interface
1 1
I I |
Web and Application Server
Web Server Application Server
Application Tier Remoting Service

I Order Processing Application |

I I
| |

Database Server

Order
», Database
~

Data Tier

http://www.cardisoft.gr/frontend/article.php?aid=874&cid=96

N. Meng, B. Ryder 19

Model-View-Controller

MODEL CONTROLLER

Design of Finite State Machine Drawing Tool
https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg

N. Meng, B. Ryder 20

10/5/15

10

Key Points about MVC

« View layer should not handle system
events

« Controller layer has the application logic
to handle events

* Model layer only respond to data
operation

3 layer: Pros and Cons

* Pros
— Clear separate concerns
« Easy to develop, change & reuse
* Cons

— Hard to maintain when changes in one layer
can affect other layers

10/5/15

11

Layered Architecture: Pros and Cons

* Pros
— Support increasing levels of abstraction
during design
— Support reuse and enhancement
» Cons
— The performance may degrade
— Hard to maintain

Hadoop Map-Reduce

 Open source project written in Java
* Large scale distributed data processing

« Based on Google's Map Reduce
framework and Google file system

* Work on commodity hardware

 Used by Google, Yahoo, Facebook,
Amazon, and many startups

http://www.slideshare.net/acmvnit/hadoop-map-reduce

10/5/15

12

Hadoop Core

« Hadoop Distributed File System (HDFS)

— Distributes and stores data across a
cluster

* Hadoop Map Reduce(MR)
— Provides a parallel programming model
— Moves computation to where the data is
— Handles scheduling, fault tolerance
— Status reporting and monitoring

Word Count Problem

* Find the frequency of each word in a
given corpus of documents

« Trivial for small data

« How fo process more than a TB of data?
— Doing it on one machine is very slow

« Good news: it can be parallelized across
nhumber of machines

 Strategy: Divide-and-conquer

10/5/15

13

Map Reduce Architecture

Input Job (mapper,
reducer, input) O) Assign tasks
tasktracker | <——> |tasktracker| <~ |tasktracker

Data transfer

Programmer submits job (mapper, reducer,
input) o Job tracker

Job tracker, splits input data, schedules and
monitors various map and reduce tasks

Task tracker executes map and reduce
tasks

Map Reduce Programming Model

Inspired by functional language primitives

map f list : applies a given function f to each
element of a list and returns a new list

map square [12 345]=[149 16 25]

reduce g list : combines elements of list
using function g to generate a new value

reduce sum [12 34 5]=[15]
Map and reduce do not modify input

10/5/15

14

Mapper and Reducer
* Mapper

— Input: records(database rows etc.)
represented as key/value pairs

— Output: one or more intermediate key/value
pairs for each input
* Reducer
— Input: intfermediate key/value pairs

— Output: final key/value pairs based on
combination of input pairs

Word Count Map Reduce Job

* Mapper
— Input: <key:offset, value: a line of a document>
— Output: <key:word, value: count in the line>
* Reducer
— Input: <key: w, value: count>
— Output: <key: w, value: Zcount>

10/5/15

15

10/5/15

Map, Shuffle & Sort, Reduce

Input : Map Shuffle & Sort : Reduce Output
the quick
rown fi
brown, 2
fox, 2
how, 1
now, 1
the, 3
the fox
ate the
mmmmm
ate, 1
h cow, 1
bro\:rlnngng (R,
quick, 1
" N.Meng, B. Ryder 1 ‘ 31

Shuffle & Sort

* Partition Map-output by hashing the key
— Same keyed pairs are put together

* Number of partitions is equal to humber
of reducers

* Partitions are sorted by keys

N. Meng, B. Ryder 32

16

Revisit Map Reduce Architecture

ﬁﬂﬁﬂﬂ<:>ﬁﬂﬁﬂﬁ<>ﬁﬁﬁﬂﬂ
Data transfer
« Job tracker
— Splits input and assigns to tasktrackers
— Schedules and monitor map tasks (heartbeat)
— On completion, schedule reduce tasks
« Task tracker
— Execute map tasks

— Partition and sort map outputs
— Execute reduce tasks

Usage

* Map-Reduce greatly simplifies writing
large scale distributed applications

 Used for building search index at
Google, Amazon

« Widely used for analyzing user logs,
data warehousing and analytics

* Also used for large scale machine
learning and data mining applications

10/5/15

17

10/5/15

Pros
* Locality
— Job tracker divides tasks based on location of
data

e Parallelism

* Fault tolerance

— Job tracker maintains a heartbeat with task
trackers

— Failures are handled by reexecution

N. Meng, B. Ryder 35

Cons?

N. Meng, B. Ryder 36

18

10/5/15

How to Do Architecture Design?

« When decomposing a system into
subsystems, take into consideration
— how subsystems share data

« data-centric or data-distributed
— how control flows between subsystems
* as scheduled or event-driven

— how they interact with each other
* via data or via method calls

19

