
9/30/15	

1	

Design Engineering

Overview

•  What is design engineering?
•  How to do software design?
•  Principles, concepts and practices

N.	
 Meng,	
 B.	
 Ryder	
 2	

9/30/15	

2	

Design Engineering

•  The process of making decisions about
HOW to implement software solutions
to meet requirements

•  Encompasses the set of concepts,
principles, and practices that lead to
the development of high-quality systems

N.	
 Meng,	
 B.	
 Ryder	
 3	

Concepts in Software Design

•  Modularity
•  Cohesion & Coupling
•  Information Hiding
•  Abstraction & Refinement
•  Refactoring

N.	
 Meng,	
 B.	
 Ryder	
 4	

9/30/15	

3	

Modularity

•  Software is divided into separately
named and addressable components,
sometimes called modules, that are
integrated to satisfy problem
requirements

•  Divide-and-conquer

N.	
 Meng,	
 B.	
 Ryder	
 5	

Modularity and Software Cost

N.	
 Meng,	
 B.	
 Ryder	
 6	

9/30/15	

4	

Cohesion & Coupling

•  Cohesion
– The degree to which the elements of a module

belong together
– A cohesive module performs a single task

requiring little interaction with other modules
•  Coupling
– The degree of interdependence between

modules
•  High cohesion and low coupling

N.	
 Meng,	
 B.	
 Ryder	
 7	

Information Hiding

•  Do not expose internal information of a
module unless necessary
– E.g., private fields, getter & setter

methods

N.	
 Meng,	
 B.	
 Ryder	
 8	

9/30/15	

5	

Abstraction & Refinement

•  Abstraction
– To manage the complexity of software,
– To anticipate detail variations and future

changes
•  Refinement
– A top-down design strategy to reveal low-level

details from high-level abstraction as design
progresses

N.	
 Meng,	
 B.	
 Ryder	
 9	

Abstraction to Reduce Complexity

•  We abstract complexity at different
levels
– At the highest level, a solution is stated in

broad terms, such as “process sale”
– At any lower level, a more detailed

description of the solution is provided, such
as the internal algorithm of the function
and data structure

N.	
 Meng,	
 B.	
 Ryder	
 10	

9/30/15	

6	

Abstraction to Anticipate Changes

•  Define interfaces to leave
implementation details undecided

•  Polymorphism

<<interface>>
ITaxCalculator

getTaxes(…)

TaxMaster

TurboTax

TaxBonanza

N.	
 Meng,	
 B.	
 Ryder	
 11	

Refinement

•  The process to reveal lower-level details
– High-level architecture software design
– Low-level software design
•  Classes & objects
•  Algorithms
•  Data

N.	
 Meng,	
 B.	
 Ryder	
 12	

9/30/15	

7	

Refactoring

“…the process of changing a software
system in such a way that it does not
alter the external behavior of the code
[design] yet improves its internal
structure” --Martin Fowler

•  Goal: to make software easier to

integrate, test, and maintain.

N.	
 Meng,	
 B.	
 Ryder	
 13	

S.O.L.I.D Principles of OOD

•  S – Single-responsibility principle
•  O – Open-closed principle
•  L – Liskov substitution principle
•  I – Interface segregation principle
•  D – Dependency Inversion Principle

Robert Martin

N.	
 Meng,	
 B.	
 Ryder	
 14	

9/30/15	

8	

A Running Example
class Circle {
 public float radius;

 public Circle(float radius) {
 this.radius = radius;
 }
}

class Square {
 public float length;

 public Square(float length) {
this.length = length;

 }
}

N.	
 Meng,	
 B.	
 Ryder	
 15	

•  A class should have only one job.
– Modularity, high cohesion, low coupling

•  Sum up the areas for a list of shapes?

Single-responsibility principle
Robert Martin

class AreaCalculator {
protected List<Object> shapes;
public AreaCalculator (List<Object> shapes) {

this.shapes = shapes;
}
public float sumArea() {

// logic to sum up area of each shape
}

}

N.	
 Meng,	
 B.	
 Ryder	
 16	

9/30/15	

9	

O – Open-closed principle

•  Objects or entities should be open for
extension, but closed for modification.

•  Add a new kind of shape, such as Triangle?
interface Shape {

public float area();
}
class Triangle implements Shape { … }
…
class AreaCalculator {

protected List<Shape> shapes;
public float sumArea() {

float sum = 0;
for (Shape s : shapes) { sum += s.area(); }
…

} …
}

N.	
 Meng,	
 B.	
 Ryder	
 17	

L - Liskov substitution principle

•  Let q(x) be a property provable about
objects of x of type T. Then q(y) should
be provable for objects y of type S
where S is a subtype of T.

•  Every subclass/derived class should be
substitutable for their base/parent
class.
class Triangle implements Shape {

…
public float area () { return -1; }

}

✗	

N.	
 Meng,	
 B.	
 Ryder	
 18	

9/30/15	

10	

I - Interface segregation principle

•  A client should never be forced to
implement an interface that it doesn’t
use or clients shouldn’t be forced to
depend on methods they do not use.

•  Interface design
interface Shape{

…
public int numEdges();

}

✗	

N.	
 Meng,	
 B.	
 Ryder	
 19	

D - Dependency Inversion principle

•  Entities must depend on abstractions
not on concretions. It states that the
high level module must not depend on
the low level module, but they should
depend on abstractions.
class AreaCalculator{

protected Connection con;
public AreaCalculator(…, MySQLConnection con) {

…
this.con = con;

}
}

✗	

N.	
 Meng,	
 B.	
 Ryder	
 20	

9/30/15	

11	

Software Design Practices Include:

•  Two stages
– High-level: Architecture design
•  Define major components and their relationship

– Low-level: Detailed design
•  Decide classes, interfaces, and implementation

algorithms for each component

N.	
 Meng,	
 B.	
 Ryder	
 21	

How to Do Software Design?

•  Reuse or modify existing design models
– High-level: Architectural styles
– Low-level: Design patterns, Refactorings

•  Iterative and evolutionary design
– Package diagram
– Detailed class diagram
– Detailed sequence diagram

N.	
 Meng,	
 B.	
 Ryder	
 22	

