
9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 1	

Course Information

Course Topics
•  Software process
•  Requirement analysis
•  Software design
– Architecture styles
– Design patterns

•  Unified Modeling Language
•  Software testing
•  Software maintenance
•  SE research topics

N.	
 Meng,	
 B.	
 Ryder	
 2	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 2	

Grading Scale
•  I may choose to

curve the grades at
the end of the
term

N.	
 Meng,	
 B.	
 Ryder	
 3	

Score Grade
97-100 A+
93-96.9 A
90-92.9 A-
87-89.9 B+
83-86.9 B
80-82.9 B-
77-79.9 C+
73-76.9 C
70-72.9 C-
65-69.9 D
<65 F

Group Project
•  Work in teams (3-4 people)
•  One project
– Choose from a set of given topics
– Come up with your own and get the instructor’s

approval
•  Go through analysis and design
•  Turn in required documents and diagrams
•  Give a presentation
•  Peer review inside/between groups

N.	
 Meng,	
 B.	
 Ryder	
 4	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 3	

Introduction to Software
Engineering

Overview
•  Software in our lives
•  Hardware vs. Software
•  What is software engineering?
•  Software engineering - precis of a short

history by [Barry Boehm, ICSE’06 Keynote]
•  Software myths
•  Learning objectives

6	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 4	

Software is ubiquitous
•  System software
– OS, compilers, device drivers

•  Business software
– Payroll, accounting

•  Engineering/scientific software
– Computer-aided design, simulation

•  Embedded software
– GPS navigation, Flight control, Toaster

7	
 N.	
 Meng,	
 B.	
 Ryder	

Software is ubiquitous
•  Product-line software (PC-like based)
– Spreadsheets, word processing, games

•  Web-based software
– Gmail, Facebook, Youtube

•  Artificial intelligence software
– Robotics, artificial neural networks,

theorem proving

8	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 5	

What is Software?

•  Software encompasses:
– Executable programs
– Data associated with these programs
– Documents: user requirements, design

documents, user/programmer guides

•  Definition [Pressman]
– The product that software professionals

build and then support over the long term

9	
 N.	
 Meng,	
 B.	
 Ryder	

Hardware vs. Software

o  Manufactured
o  Wear out
o  Built using components
o  Relatively simple

o  Developed/ engineered
o  Deteriorate
o  Custom built
o  Complex

10	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 6	

Manufacturing vs. Development

o  Hardware is difficult
or impossible to modify

o  Software is routinely
modified and upgraded

o Hiring more people
causes more work done

o This is not always true

o Costs are more
concentrated on products

o  Costs are more
concentrated on design

11	
 N.	
 Meng,	
 B.	
 Ryder	

Hardware does “wear out”

Failure curve of hardware—”bathtub curve” 12	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 7	

Software does “deteriorate”

Failure curve of software

13	
 N.	
 Meng,	
 B.	
 Ryder	

Component based vs. Custom built

•  Hardware products employ many
standardized design components.

•  Most software is always custom built.
•  The software industry does seem to be

moving (slowly) toward component-based
construction.

14	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 8	

Software Crisis?
•  Projects running over-budget
•  Projects running over-time
•  Software was very inefficient
•  Software was of low quality
•  Software often did not meet requirements
•  Projects were unmanageable and code

difficult to maintain
•  Software was never delivered

15	
 N.	
 Meng,	
 B.	
 Ryder	

What is software engineering?
Pressman’s book
 A discipline that encompasses
•  process of software development
•  methods for software analysis, design,

construction, testing, and maintenance
•  tools that support the process and the

methods

16	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 9	

Process, Methods, Tools
•  Various tasks required to build and

maintain software
–  e.g. design, testing, etc.

•  SE process: the organization and
management of these tasks
–  various process models

•  SE methods: ways to perform the tasks
•  SE tools: assist in perform the tasks
– UML tools, IDEs, issue tracking tools

17	
 N.	
 Meng,	
 B.	
 Ryder	

Importance of Historical
Perspective

•  Santayana half-truth:
– “Those who cannot remember the past are

condemned to repeat it”
•  Don’t remember failures?
– Likely to repeat them

•  Don’t remember successes?
– Unlikely to repeat them

Cf Barry Boehm, ICSE06 Keynote 18	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 10	

History of SW Development

1950’s: engineer software like hardware

•  Hardware-oriented software applications
– Airplanes, circuits

•  Economics: computer time more valuable
than people time
– Boehm supervisor, 1955: “We’re paying $600/

hour for that computer, and $2/hour for you,
and I want you to act accordingly.”

Cf Barry Boehm, ICSE06 Keynote 20	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 11	

SAGE Software Development Process

Cf Barry Boehm, ICSE06 Keynote

OPERATIONAL PLAN

MACHINE SPECIFICATIONS OPERATIONAL SPECIFICATIONS

PROGRAM SPECIFICATIONS

CODING SPECIFICATIONS

CODING

PARAMETER TESTING (SPECIFICATIONS)

ASSEMBLY TESTING (SPECIFICATIONS)

SHAKEDOWN

SYSTEM EVALUATION

21	
 N.	
 Meng,	
 B.	
 Ryder	

1960’s: software is NOT LIKE hardware

•  Properties
– Invisible, complex, had to be executed by

computers, hard to change, doesn’t wear
out, unconstrained by physical laws of
nature

•  Demand for programmers exceeded
supply
– Cowboy programmers as heroes
– Computer Science Department formed

Cf Barry Boehm, ICSE06 Keynote 22	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 12	

1960’s: software is NOT LIKE hardware

•  Code-and-fix process
•  Better infrastructures
– OS, compilers, utilities

•  Some large successes
– Apollo, BofA checking processing, ESS

•  Failure of most large systems
– Unmaintainable spaghetti code
– Unreliable, undiagnosable systems
– Code-and-fix process is too expensive

23	
 N.	
 Meng,	
 B.	
 Ryder	

1970’s Formal and Waterfall Approaches

•  Structured programming, eliminate goto
•  Formal methods
–  Specification, development, verification
–  Problems
•  Successful for small, critical programs
•  Proofs show presence of defects, not absence
•  Scalability of programmer community

Cf Barry Boehm, ICSE06 Keynote 24	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 13	

•  Waterfall process model
– Requirements, design, coding, testing,

operations (maintenance)
– Problems
•  Customers’ changing requirements destroy

distinctions between phases
•  Heavyweight documentation hard to review and

maintain
•  Assumption for smooth transition from design

and implementation

25	
 N.	
 Meng,	
 B.	
 Ryder	

Large-Organization HW/SW Cost Trends
(1973)

Cf Barry Boehm, ICSE06 Keynote

 100

80

60

40

20

0
1955 1970 1985

Hardware

Software

Year

% of
total cost

26	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 14	

1980’s Synthesis: Productivity, Reuse,
Objects

•  Major SW productivity enhancers
– Working faster: tools and environments
– Working smarter: processes and methods
– Work avoidance: reuse, simplicity, objects
– Technology silver bullets: AI, Do what I

mean, programming by example
•  Reuse libraries
•  Object orientation
– Smalltalk, Eiffel, C++

Cf Barry Boehm, ICSE06 Keynote 27	
 N.	
 Meng,	
 B.	
 Ryder	

“No Silver Bullet”, Fred Brooks

“There is no single development, in either
technology or management technique,
which by itself promises even one order-
of-magnitude improvement within a
decade in productivity, in reliability, in
simplicity.”

IEEE Computer, 1987

28	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 15	

•  “Essential” difficulties to build software
– Complexity: no two parts are alike
– Conformity: conform to existing interfaces
– Changeability: subject to change
– Invisibility: has no ready geometric

representation
•  Closest thing to silver bullet: great

designers and communicators

29	
 N.	
 Meng,	
 B.	
 Ryder	

1990’s maturity models and agile methods

•  Capacity Maturity Models (CMM)
– Reliance on explicit documented knowledge
– Heavyweight but verifiable, scalable

•  Agile Methods
– Reliance on interpersonal tacit knowledge
– Lightweight, adaptable, not very scalable

•  Other trends
– reverse engineering, Open Source SW,

Spiral process model

Cf Barry Boehm, ICSE06 Keynote 30	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 16	

2000’s Synthesis

•  Model-driven development
•  Risk-driven model
•  Service-oriented architecture
•  Hybrid agile/plan-driven product and

process architectures

31	
 N.	
 Meng,	
 B.	
 Ryder	

Existing SW Problems
•  Software is too expensive
•  Software takes too long to build
•  Software quality is low
•  Software is too complex to support and

maintain
•  Software does not age gracefully
•  Not enough highly-qualified people to

design and build software
32	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 17	

Data by the Standish Group (1995)
•  $81B on canceled software projects
•  $59B for budget overruns
•  Only 1/6 projects were completed on time and

within budget
•  Nearly 1/3 projects were canceled
•  Over half projects were considered

“challenged”
•  Among canceled and challenged projects
–  Budget overrun: 189% of original estimate
–  Time overrun: 222% of original estimate
–  Only 61% of the originally specified features

N.	
 Meng,	
 B.	
 Ryder	
 33	

Software Myths

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 18	

Management Myths
•  “If we get behind schedule, we can just

add more people and catch up”
•  Fact: Adding people to a late project

makes it even later
– The people working now must spend time

educating the newcomers

35	
 N.	
 Meng,	
 B.	
 Ryder	

Customer Myths
•  “A general statement of objectives is

enough to start programming”

•  Fact: An ambiguous statement of
objectives leads to project failures
– Unambiguous requirements need

effective and continuous communication
between customer and developer

36	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 19	

Customer Myths
•  “Changes in requirements are easy to

deal with because software is flexible”
•  Fact: Changes are hard and expensive

37	
 N.	
 Meng,	
 B.	
 Ryder	

Practitioner’s Myths
•  “Once we get the program running, we

are done”
•  Fact: 60-80% effort comes after the

software is delivered for the first time
– Bug fixes, feature enhancements, software

reengineering, migration

38	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 20	

Practitioner’s Myths
•  “Until I get the program running, I

cannot assess quality”
•  Fact: Software reviews can be applied once

code is written and are very effective;
pair programming techniques as well

39	
 N.	
 Meng,	
 B.	
 Ryder	

Practitioner’s Myths
•  “The only deliverable work product is the

running program”
•  Fact: Need the entire configuration
– Documentation of system requirements,

design, programming, and usage

40	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 21	

Practitioner’s Myths
•  “SE will slow us down by requiring

unnecessary documentation”
•  Fact: SE is about creating quality
•  Better quality -> reduced rework

-> faster delivery time
•  Brooks recommends time division of:

1/3 planning; 1/6 coding; 1/4
component test and early system
test; 1/4 system test

41	
 N.	
 Meng,	
 B.	
 Ryder	

Learning Objectives
•  Knowledge of basic concepts in software

engineering
•  Ability to do Object-oriented

requirement analysis
•  Ability to do Object-oriented design
•  Good command of UML and Patterns
•  Understanding importance of teamwork

42	
 N.	
 Meng,	
 B.	
 Ryder	

9/1/15	

N.	
 Meng,	
 B.	
 Ryder	
 22	

Software Engineering
•  Software is complex, expensive, late,

low-quality, hard to maintain
•  Goal: approach these problems using

software engineering
•  Key message: the field is very young –

The term “SE” was introduced in 1968

43	
 N.	
 Meng,	
 B.	
 Ryder	

