
Julia 
Programming 

Language
By Hunter Capestany, Saylee Marulkar, Michael 

Wilson, Zach Monheim, and Jared Hubert



Introduction
● Main creators in 2009: 

○ Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman

● Began to pick up steam in 2012
● NASA and the FAA are hugely responsible for development of Julia
● Julia has features that are similar to many languages you may know:

○ Python
○ Java
○ Matlab

● Provides asynchronous I/O, debugging, logging, a package manager, etc.



Dynamic Typing
● Similar to Python with dynamic inferred types.
● Can increase efficiency by still taking advantage of static type system by 

allowing indication of certain types.
○ x::Int8 = 100 (Type declaration)
○ Can confirm program runs as expected.
○ Provides more information to compiler for performance.



Other Language Library Access
● The Julia language can use shared libraries from C and Fortran.
● Can use C and Fortran code in Julia

○  machine instructions generated by Julia's JIT are the same as a native C call would be

● Access to other libraries despite being a newer language



Negative Array Indexing
● Equivalent to Python, Julia supports negative indexing of arrays
● Not available in most other languages i.e. ArrayIndexOutOfBoundsException 

in Java
● Index into an array from the end instead of the start
● More efficient since calculating the offset using the length of the array is not 

needed
● More readable: Accessing Second to Last Element for Example

○ array[length(array) - 1]
○ array[-2]
○ Equivalent Statements but the second is more concise and quicker to compute



Garbage Collection
● Mark-Sweep Garbage Collection

○ Mark objects as reachable from set of roots and sweeps unreachable objects

● Does not do any kind of reference counting
● Does not move or copy objects like some techniques that other languages 

implement
● Makes use of Generational Garbage Collection

○ Focuses on younger and newly created objects
○ Moves surviving objects to older generations

● No garbage collector options
○ Helps ensure collector cannot be changed for the worst



JAOT (Just Ahead of Time) Compilation
● Like Fortran, C, C++

○ Compiles ahead of time only machine code for specific types

● However, dynamically typed
○ Scans instructions and compiles for types with type inference
○ Caches the found types
○ If a different type is found, recompiles and caches separately



Parallel Computing
● Asynchronous “tasks”/coroutines

○ “Tasks”
○ Allows for interrupts and switching between tasks
○ Uses idea of producer/consumer rather than caller/callee via Channels

● Multi-threading
○ Starts with single thread of execution by default
○ Generate multiple threads through use of “--threads” flag
○ Programmer is responsible for avoiding data-races via the use of a locking format

● Distributed computing
○ Provided by the “Distributed” module
○ Allows for the use of multiple CPUs with separate memory domains
○ Uses RemoteChannel for communication using put! and take! commands



Scientific Programming using Julia
● Data Visualization 

○ Jupyter Notebook 
■ https://github.com/JuliaCloud/JuliaBox
■ iJulia Kernel

● Data mining
● Large - scale linear algebra
● Parallel Computing
● Distributed Computing
● AI development and Deep Learning 

○ TensorFlow.jil - https://github.com/malmaud/TensorFlow.jl
○ Mocha - https://github.com/pluskid/Mocha.jl

https://github.com/JuliaCloud/JuliaBox


Other Applications
● Financial Analysis and Quants Packages

○ Miletus - a DSL for financial contracts
○ JuliaDB - a high performance in-memory and distributed database
○ JulialnXL - call Julia from Excel sheets
○ Bloomberg - providing access to Bloomberg financial data

● Climate Modelling
○ Solves the two-language problem
○ Official language of CliMA - Climate Modelling Alliance
○ Differential Equations - computational simulations

● Bioinformatics
○ Genomic Data Sets
○ BioJulia - DNA Sequence Analysis



Conclusion
● Julia is a very versatile programming language
● Notable uses:

○ Time-series analytics
○ Mathematical models (Notably economics)
○ Satellite simulation
○ CS 4824 (Machine Learning) here at Tech

● Interested in more: https://julialang.org/ or check out JuliaCon

https://julialang.org/


Question
Given all of this information, what other sorts of applications would Julia be optimal 
for? 

Notable uses:

● Time-series analytics
● Mathematical models (Notably economics)
● Satellite simulation
● CS 4824 (Machine Learning) here at Tech



Sources

● Hall, Matt. “Julia in a Nutshell.” Agile, Agile, 4 Sept. 2014, agilescientific.com/blog/2014/9/4/julia-in-a-nutshell.html. 

● Heller, Martin. “What Is the Julia Language? A Fresh Approach to Numerical Computing.” InfoWorld, InfoWorld, 27 
June 2018, www.infoworld.com/article/3284380/what-is-julia-a-fresh-approach-to-numerical-computing.html. 

● “Julia (Programming Language).” Wikipedia, Wikimedia Foundation, 16 Sept. 2020, 
en.wikipedia.org/wiki/Julia_(programming_language). 

● Karpinski, Stefan. “The Julia Language.” The Julia Programming Language, julialang.org/. 

● Krill, Paul. “New Julia Language Seeks to Be the C for Scientists.” InfoWorld, InfoWorld, 18 Apr. 2012, 
www.infoworld.com/article/2616709/new-julia-language-seeks-to-be-the-c-for-scientists.html. 

● Perkel, Jeffrey M. “Julia: Come for the Syntax, Stay for the Speed.” Nature News, Nature Publishing Group, 30 July 
2019, www.nature.com/articles/d41586-019-02310-3. 

● Rao, Vicky Singh, et al. “Julia Programming Language - A True Python Alternative.” Technotification, 22 Aug. 2018, 
www.technotification.com/2018/08/julia-programming-language.html. 


