
Flaky Tests at Google
Samuel Myles

Zifan Wang
     Runnan Zhou

Boyan Tian



Deterministic Unit Testing
● Tests for correct implementation 

in different parts of codebase.
● The same input and code should 

produce the same test result 
every time.



Nondeterministic Unit Testing (Flaky Tests)
What

● A test that can pass or fail given the 
same portion of code to test

● A failed test of this nature doesn’t 
necessarily indicate an issue with 
new code

● Recreating failures can be a 
cumbersome process Server responded on time ---> test pass

Server responded out of time ---> test fail 



Reason for Flaky tests
● Async wait
● Concurrency
● Test Order dependency
● Network
● I/O



Advantages and Disadvantages of Flaky Tests
Advantages: 

● Help to find some hidden bugs

Disadvantages: 

● Can not achieve the test goal
● people gradually distrust test 

automation
● Reduce the efficiency of the R&D 

team



Google’s Dilemma
● Around 2017 Google had around 4.2 million tests that ran on their 

continuous integration system
○ Around 62,000 tests (~1.5% of their total test bed) had flaky behavior a week
○ 84% of passing tests that transitioned to failing involved a flaky test
○ Spent between 2–16% of their compute resources re-running flaky tests

● Consequences:
○ Extra resources used to investigate whether test was flaky or legitimate
○ Some developers dismissed legitimate failures as being flaky
○ False positives kept needed code changes from immediately reaching deployment



Trends in Flakiness



Best(ish) Practices
● Quickly identify flaky tests

○ Logging of test conditions
■ Execution times, test types, run flags, consumed resources, etc.

○ Make use of tools to identify flakiness within tests
○ Rerun tests with a clean system state to check if a constant result occurs

● Ensure flaky tests are reported and fixed fast
○ Reported tests not yet fixed saves time for rest of development team
○ Quickly fixing flaky tests prevents dependent tests from failing



Discussion Questions
● Do you think smaller companies should invest in flaky test mitigation if 

they aren’t working on large scalable systems?

● Should flaky tests, or at least their existence, be a topic covered when 
learning software development?



References
● https://hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359
● https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
● https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
● https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f

60#:~:text=Resource%20leak%3A%20Tests%20can%20be,they%20are%20no%20lo
nger%20needed.

● http://mir.cs.illinois.edu/~qluo2/fse14LuoHEM.pdf

https://hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60#:~:text=Resource%20leak%3A%20Tests%20can%20be,they%20are%20no%20longer%20needed
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60#:~:text=Resource%20leak%3A%20Tests%20can%20be,they%20are%20no%20longer%20needed
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60#:~:text=Resource%20leak%3A%20Tests%20can%20be,they%20are%20no%20longer%20needed
http://mir.cs.illinois.edu/~qluo2/fse14LuoHEM.pdf

