
10 Java Security Best Practices

Weihao Gao, Yangkai Lin, Zicong Lin,
Andrew White, Weikai Liang

1. SQL Injection

●  SQL stands for Structured Query Language. SQL is used to
communicate with a database.

●  SQL injection is a code injection technique that can destroy the
database by executing malicious SQL statements.

1. SQL Injection

// The query can be hijacked by malicious input.

public void selectExample(String parameter) throws SQLException {

 Connection connection = DriverManager.getConnection(DB_URL, USER, PASS);

 String query = "SELECT * FROM USERS WHERE lastname = " + parameter;

 Statement statement = connection.createStatement();

 ResultSet result = statement.executeQuery(query);

 printResult(result);

}

1. SQL Injection

https://portswigger.net/web-security/images/sql-injection.svg

1. SQL Injection

Source: https://hackaday.com/wp-content/uploads/2014/04/18mpenleoksq8jpg.jpg

// This technique prevents the parameter input from interfering with the SQL code.

public void prepStatmentExample(String parameter) throws SQLException {

 Connection connection = DriverManager.getConnection(DB_URL, USER, PASS);

 String query = "SELECT * FROM USERS WHERE lastname = ?";

 PreparedStatement statement = connection.prepareStatement(query);

 statement.setString(1, parameter);

 System.out.println(statement);

 ResultSet result = statement.executeQuery();

 printResult(result);

}

1. SQL Injection

2. Use OpenID Connect with 2FA

●  Leverage third-party clients for authentication.
●  Identity management and access control is difficult and broken authentication

is often the reason for data breaches.

3. Scan your dependencies for known vulnerabilities

Ensure your application does not use dependencies with known vulnerabilities. Use a
tool like Snyk (www.Snyk.io) to:

●  Test your app dependencies for known vulnerabilities
●  Automatically fix any existing issues
●  Continuously monitor your projects for new vulnerabilities over time

4. Handle sensitive data with care

●  Sanitize the toString() methods of your domain entities.

●  If using Lombok, annotate sensitive classes. @ToString.Exclude

●  Use @JsonIgnore and @JsonIgnoreProperties to prevent sensitive properties from being

serialized or deserialized.

https://javabydeveloper.com/lombok-tostring-examples/

5.Sanitize all input

Cross-site scripting(XSS) attack

XSS is an injection of JavaScript code executed remotely

OWASP Java encoding

<dependency>

 <groupId>org.owasp.encoder</groupId>

 <artifactId>encoder</artifactId>

 <version>1.2.2</version>

</dependency>

6.Configure your XML-parsers to prevent XXE

When XML external entities (XXE) are enabled, they can be exploited to create malicious XML.

The Java XML library is particularly vulnerable to XXE injection because most XML parsers enable
external entities by default.

...

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser saxParser = factory.newSAXParser();

factory.setFeature("https://xml.org/sax/features/external-general-entities", false);

saxParser.getXMLReader().setFeature("https://xml.org/sax/features/external-general-entities", false);

factory.setFeature("https://apache.org/xml/features/disallow-doctype-decl", true);

...

7. Avoid Java serialization

Source: https://byam.github.io/glossary,/data/2018/06/11/data-engineering-glossary.html

Java Serialization and Deserialization

Insecure Deserialization

•  Manipulate object data

•  Manipulate program logic

Insert malicious serialized object that can:

8. Use strong encryption and hashing algorithms
●  Symmetric encryption: AES using Google Tink

●  Asymmetric encryption: BCrypt using Spring Security

Source: https://snyk.io/blog/10-java-security-best-practices/

9. Enable the Java Security Manager

Enable default: java -Djava.security.manager

Enable custom: java -Djava.security.manager -Djava.security.policy==/foo/bar/custom.policy

Attach API Hack:

Souce: https://blog.frankel.ch/jvm-security/4/

10. Centralize logging and monitoring

●  Log all incoming requests
●  Monitor for strange activity

○  CPU spikes, large load from a single IP

Souce: https://www.shortn0tes.com/2018/02/elk-stack-with-log4j.html

Discussion

Q: Do you think these practices are useful and how will you use them in your
application development?

