Declarative vs. Imperative
Programming in JS/TS

Joey Merline, Katie Pikturna, Jake Smith, Gence Yalcin, Al
Youssef

Contents

- Javascript vs Typescript Overview

- Declarative vs. Imperative Programming

- Pros and Cons of Declarative Programming in JS/TS
- Pros and Cons of Imperative Programming in JS/TS
- Combining Imperative and Declarative Programming
- Discussion Questions

Javascript (JS) vs Typescript (TS)

TS introduced on top of JS to aid in development of large-scale web applications

JS (est 1995)
High level, JIT, dynamically typed
OOP (without classes), lightweight

Various programming styles, can switch
between imperative and declarative

const arrayContainsAnotherArray = (needle, haystack) => {
for(let 1 = 0; 1 < needle.length; i++) {

if(haystack.index0f(needle[1]) === -1)
return false;
}
return true;

}

TS (est 2012)
Transcompiles to JS, strongly typed
OOP features, modules, functions

Decorators extend class/method
functionality in a declarative way

const arrayContainsOtherArray = (needle=[], haystack=[]) =>
needle.every(el => haystack.includes(el));

Declarative vs. Imperative Programming

e Declarative Programming:
o A programming paradigm that expresses the logic of computation without describing the
control flow:
m | have some number n of fruits, and for each fruit | would like to slice them in half
e Imperative Programming:
o A programming paradigm that changes the state of the program using statements.
m | have some number n of fruits. Assign a number to each fruit. Loop from O to 10. Get that

fruit based on the number the fruit is. Slice that fruit in half.

Pros and Cons of Declarative Programming in JS/TS

Pros:

e Shorter and more efficient code compared to imperative
e Allows you to work with solution states, to let programs figure things out for you. (Ex. Upsert)
e Reduces side effects by discouraging variables in favor of constructs like pipelines.

Cons:

e Can be hard for external developers to understand
e Unfamiliarity with the conceptual model (solution states)

Pros and Cons of Imperative Programming in JS/TS

Pros

e FEasyto understand because of additional lines of code
e Easierto learn how to program
e Characteristics of specific applications can be taken into account (more control)

Cons
e The additional lines of code take longer to write/read
e Can be a waste of time for experienced developers
e MORE confusing in a complex project
e Higher risk of errors

Combining Imperative and Declarative Programming

Separates low-level and high-level
elements of an application.

e Low-level: Imperative programming
e High-level: Declarative
programming

Allows developers to use an certain
elements of application without
needing to interact with the
specifics of its implementation
directly.

API

i} H—_\"‘:'
Keras Model ~ LayersAPI ==

TensorFlow
SavedModel

< >

Runtime

High and low level API’s for TensorFlow.

Example: TensorFlow.js

Low-level:

High-level:

Input layer Hidden layers

i h,

7
TAAGD
‘:’

.sequential();

h,

MM

dense({units: 1,
inputShape: [1],
activation: 'softmax’

H);

it

h,

A “O
‘\V‘V’
V%

Output layer

o

.compile({loss: 'meanSquaredError', optimizer: 'adam'});

1], [2], [

3],

[41, [51, I[6],

711, [z, 11);

d(lf1, (31, 51, 71, [91, [11], [131], [7, 11);

rodel.fit(xs, ys, {epochs: 1000});

predict(tf.tensor2d([[811, [1, 11));

Low-level: Handles the
actual process behind
the neural network.

High-Level: Developers
can simply call functions
that are handled by the
low-level framework.

Discussion Questions

Did you ever hear of declarative/imperative programming styles before this class? If
yes, where? If no, do you think the styles should be emphasized more in a CS
curriculum?

While implementing modules in JS, what use cases would warrant a declarative
over an imperative approach? Is it best to stick with one or the other, or do some
implementations warrant a hybrid approach?

