
Declarative vs. Imperative 
Programming in JS/TS

Joey Merline, Katie Pikturna, Jake Smith, Gence Yalcin, Ali 
Youssef



Contents

- Javascript vs Typescript Overview
- Declarative vs. Imperative Programming
- Pros and Cons of Declarative Programming in JS/TS
- Pros and Cons of Imperative Programming in JS/TS
- Combining Imperative and Declarative Programming
- Discussion Questions



Javascript (JS) vs Typescript (TS)
TS introduced on top of JS to aid in development of large-scale web applications

JSTS

JS (est 1995) TS (est 2012)

High level, JIT, dynamically typed Transcompiles to JS, strongly typed

OOP (without classes), lightweight OOP features, modules, functions

Various programming styles, can switch 
between imperative and declarative

Decorators extend class/method 
functionality in a declarative way



Declarative vs. Imperative Programming

● Declarative Programming:
○ A programming paradigm that expresses the logic of computation without describing the 

control flow:
■ I have some number n of fruits, and for each fruit I would like to slice them in half

● Imperative Programming:
○ A programming paradigm that changes the state of the program using statements.

■ I have some number n of fruits. Assign a number to each fruit. Loop from 0 to 10. Get that 
fruit based on the number the fruit is. Slice that fruit in half.



Pros and Cons of Declarative Programming in JS/TS
Pros: 

● Shorter and more efficient code compared to imperative
● Allows you to work with solution states, to let programs figure things out for you. (Ex. Upsert)
● Reduces side effects by discouraging variables in favor of constructs like pipelines. 

Cons: 

● Can be hard for external developers to understand
● Unfamiliarity with the conceptual model (solution states)

Imperative Declarative



Pros and Cons of Imperative Programming in JS/TS

Pros

● Easy to understand because of additional lines of code
● Easier to learn how to program
● Characteristics of specific applications can be taken into account (more control)

Cons

● The additional lines of code take longer to write/read
● Can be a waste of time for experienced developers
● MORE confusing in a complex project
● Higher risk of errors



Combining Imperative and Declarative Programming

Separates low-level and high-level 
elements of an application.

● Low-level: Imperative programming
● High-level: Declarative 

programming

Allows developers to use an certain 
elements of application without 
needing to interact with the 
specifics of its implementation 
directly.

High and low level API’s for TensorFlow. 



Example: TensorFlow.js

Low-level:

High-level: 

Low-level: Handles the 
actual process behind 
the neural network.

High-Level: Developers 
can simply call functions 
that are handled by the 
low-level framework. 



Discussion Questions

Did you ever hear of declarative/imperative programming styles before this class? If 
yes, where? If no, do you think the styles should be emphasized more in a CS 
curriculum?

While implementing modules in JS, what use cases would warrant a declarative 
over an imperative approach? Is it best to stick with one or the other, or do some 
implementations warrant a hybrid approach?


