
Large-Scale Computing in Erlang

Stephen Franklin, Brook Tamir, Gregory
Chang

Agenda ● Where Erlang is Used

● History

● Language Features

● Basics

● Distributed Computing

Where Erlang is
Used

● Whatsapp

● Goldman Sachs

● BT Mobile

● Discord

● Ericsson

● Cisco

● Nintendo

History ● Erlang was developed at the Ericsson and
Ellemtel Computer Science Laboratories.

● Erlang was created as an experiment to see if
declarative programming techniques could be
applied to large industrial scale telecom
switching systems that needed to be incredibly
reliable and scalable.

● Scientists at Ericsson realized that many of the
problems related to telecommunications could
also be applied to a wide variety of real-time
control problems faced in other industries and
released it as a general purpose language.

Source: https://erlang.org/download/erlang-book-part1.pdf

Erlang, while also being a syllabic abbreviation of "Ericsson Language",
is named after Danish mathematician and engineer Agner Krarup
Erlang.

https://erlang.org/download/erlang-book-part1.pdf

Language Features Erlang is a declarative, general purpose, functional
programming language, built with concurrency in
mind.

Main features:

● Declarative
● Concurrent
● Real-time (Soft)
● Continuous operation
● Robust
● VM/Real-time Garbage Collected
● No shared memory
● Easily Integrate with programs written in other

languages.
● Hot Swapping

Source: https://erlang.org/download/erlang-book-part1.pdf

https://erlang.org/download/erlang-book-part1.pdf

Basics

Erlang is primarily a functional programming
language.

A core difference between Erlang and an imperative
language like Java is that there is a heavy focus on
processes.

Variables are immutable.

Individual blocks of code produces consistent
output values.

Basic program syntax and execution

● Since the language employs pattern matching the
Erlang VM will decide which function to employ
based pattern matching of the parameters.

● If factorial(4) will match to factorial(N) -> N *
factorial(N - 1)

● Next, factorial(3) will match to factorial(N) -> N *
factorial(N - 1)

● Next, factorial(2) will match to factorial(N) -> N *
factorial(N - 1)

● Next, factorial(1) will match to factorial(N) -> N *
factorial(N - 1)

● Finally, factorial(0) will match to factorial(0) -> 1

Program/Diagram Source: https://erlang.org/download/erlang-book-part1.pdf

https://erlang.org/download/erlang-book-part1.pdf

Erlang Error Handling “Let it crash”

● Instead of burdening yourself with defensive programming principles
there is a philosophy “let it crash”.

● Since each piece of the application is broken out into small processes.
The supervisor will monitor child processes and is responsible for
managing them.

● If a child process crashes, the supervisor will start, stop, or restart all
the other processes it supervises depending on the selected restart
strategy.

Sources
Diagram: https://ferd.ca/an-open-letter-to-the-erlang-beginner-or-onlooker.html
Content: https://erlang.org/doc/man/supervisor.html

https://ferd.ca/an-open-letter-to-the-erlang-beginner-or-onlooker.html
https://erlang.org/doc/man/supervisor.html

Supervisor Trees

● Workers are the actual processes that perform computation. (circles)
● Supervisors monitor workers and can decide what to do when a child process exits. (Squares)
● Supervisors can monitor other supervisors.

Source for content and diagrams: http://erlang.org/documentation/doc-4.9.1/doc/design_principles/sup_princ.html

http://erlang.org/documentation/doc-4.9.1/doc/design_principles/sup_princ.html

Erlang Concurrency Model

“The philosophy behind Erlang and its concurrency model is best described by Joe Armstrong’s tenets:

● The world is concurrent.
● Things in the world don’t share data.
● Things communicate with messages.
● Things fail.”

Source:
https://www.oreilly.com/library/view/erlang-programming/9780596803940/ch0
4.html
Diagram:
https://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mand
elbrot-set.html

https://www.oreilly.com/library/view/erlang-programming/9780596803940/ch04.html
https://www.oreilly.com/library/view/erlang-programming/9780596803940/ch04.html
https://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html
https://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

Erlang vs. Thread Concurrency Models

Traditional, thread-based, concurrency model
encounters bug that causes fatal error in process.

Erlang process-based, concurrency model
encounters bug that causes fatal error in process.

Both Diagrams from the fantastic Computerphile Youtube video: ‘Erlang Programming Language - Computerphile’
https://youtu.be/SOqQVoVai6s?t=603

https://youtu.be/SOqQVoVai6s?t=603

Distributed
Computing

● Many instances of a server rather than a single
server

● Hot swapping (live code reload)

● Fault tolerance lead naturally to scalability

● Dataflow impacted by physical architecture

Discussion
Questions!

1. Would you use Erlang if you were working on
distributed applications?

2. Should we let the rarity of a programming
language like Erlang dictate our decisions about
whether or not to use it? E.g. if Erlang is the best
choice for the backend of a startup, might it still
not be the best choice?

3. Are there any cons of the “Let it crash”
philosophy that Erlang employs?

