Large-Scale Computing in Erlang

Stephen Franklin, Brook Tamir, Gregory
Chang

| v

ERLANG



Where Erlang is Used
History

Language Features
Basics

Distributed Computing



Whatsapp B gOIdman

achs

Where Erlang is
Used Goldman Sachs

BT Mobile

Discord a BT i\

Ericsson

Cisco g

Nintendo ERICSSON

l'l'l'l'l

CISCO




e Erlang was developed at the Ericsson and
Ellemtel Computer Science Laboratories.

e Erlang was created as an experiment to see if
declarative programming techniques could be
applied to large industrial scale telecom
switching systems that needed to be incredibly
reliable and scalable.

e Scientists at Ericsson realized that many of the
problems related to telecommunications could
also be applied to a wide variety of real-time
control problems faced in other industries and
released it as a general purpose language.

Erlang, while also being a syllabic abbreviation of "Ericsson Language”,
is named after Danish mathematician and engineer Agner Krarup
Erlang.

Source: https://erlang.org/download/erlang-book-part1.pdf



https://erlang.org/download/erlang-book-part1.pdf

Erlang is a declarative, general purpose, functional

Language Features programming language, built with concurrency in

mind.
Main features:

Declarative

Concurrent

Real-time (Soft)

Continuous operation

Robust

VM/Real-time Garbage Collected

No shared memory

Easily Integrate with programs written in other
languages.

e Hot Swapping

Source: https://erlang.org/download/erlang-book-part1.pdf



https://erlang.org/download/erlang-book-part1.pdf

Erlang is primarily a functional programming
language.

A core difference between Erlang and an imperative
language like Java is that there is a heavy focus on
processes.

Variables are immutable.

Individual blocks of code produces consistent
output values.




Basic program syntax and execution

e Since the language employs pattern matching the
Erlang VM will decide which function to employ
based pattern matching of the parameters.

2.6.3 Examples of case and if

We can write the factorial function in a number of different ways using case and

e If factorial(4) will match to factorial(N) -> N * it
factorial(N - 1) Simplest:
e Next, factorial(3) will match to factorial(N) -> N * factorial(0) -> 1;

factorial(N) -> N # factorial(N - 1).

factorial(N - 1)
e Next, factorial(2) will match to factorial(N) -> N *
H _ factorial(0) -> 1;
faCtorlaI(N 1) factorial(N) when N > 0 -> N # factorial(N - 1).
e Next, factorial(1) will match to factorial(N) -> N *
factorial(N - 1)
factorial(N) —>

e Finally, factorial(0) will match to factorial(0) -> 1 if

N==0->1;
NS N -S N % fartariallN - 1)

Using [unction guards:

Using if:

Program/Diagram Source: https://erlang.org/download/erlang-book-part1.pdf


https://erlang.org/download/erlang-book-part1.pdf

Erlang Error Handling “Let it crash”

e Instead of burdening yourself with defensive programming principles
there is a philosophy “let it crash”.

e Since each piece of the application is broken out into small processes.

The supervisor will monitor child processes and is responsible for
managing them.

e |If achild process crashes, the supervisor will start, stop, or restart all
the other processes it supervises depending on the selected restart
strategy.

Sources
Diagram: https://ferd.ca/an-open-letter-to-the-erlang-beginner-or-onlooker.html

Content: https://erlang.org/doc/man/supervisor.html

Sequential
Programs

Concurrent

Erlang

supervisor


https://ferd.ca/an-open-letter-to-the-erlang-beginner-or-onlooker.html
https://erlang.org/doc/man/supervisor.html

Supervisor Trees

e Workers are the actual processes that perform computation. (circles)

e Supervisors monitor workers and can decide what to do when a child process exits. (Squares)

e Supervisors can monitor other supervisors.

[ay

OB T
O O

Source for content and diagrams: http://erlang.org/documentation/doc-4.9.1/doc/design_principles/sup_princ.html

One for one supervision
If any child dies it is restarted

ENOR RO

all-for—one supervision
If any child dies all children
are terminated and all are restarted



http://erlang.org/documentation/doc-4.9.1/doc/design_principles/sup_princ.html

Erlang Concurrency Model

“The philosophy behind Erlang and its concurrency model is best described by Joe Armstrong’s tenets:

The world is concurrent.

Things in the world don't share data.
Things communicate with messages.
Things fail.”

Source:
https://www.oreilly.com/library/view/erlang-programming/9780596803940/ch0
4. html

Diagram:
https://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mand

elbrot-set.html

Actor System

Mailbox

Actor

M

=

Mailbox



https://www.oreilly.com/library/view/erlang-programming/9780596803940/ch04.html
https://www.oreilly.com/library/view/erlang-programming/9780596803940/ch04.html
https://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html
https://blog.scottlogic.com/2014/08/15/using-akka-and-scala-to-render-a-mandelbrot-set.html

Erlang vs. Thread Concurrency Models

Traditional, thread-based, concurrency model
encounters bug that causes fatal error in process.

CHRHED)
S s,

Wl ge)
= (Blanblen

CELTDR - §ian Bian) ' (Blah Blan
TR . [BranBiah =2 TR
bleh blah §lah blan —_

SETRTRN b13h bish

rlERd Hlah blah
(b13h b18h 5 un

(B1ah Biah Blah blah]
\ e L
6] [Ty
J
i L)

s
T O. o)
B B blah blah N
— Blah blah glancy
Ty ey 1 (BLERBTER) T LI T —

613h biah)1 11 (b13h bIEH e bish Blah
o (R \

| @GEEBh)

W]

lah
bl

Blah Euamm,,h»‘_ I

Bl SRk T 812 Bian
blaHEIR),, ____ | (BIEiETEn) ! JUTCENEO R e
B 0 LT T ) M

\ (B1ah Blan

g,
SLATBI), ),

1
Blah Blah),
\(Blan 1an),,
i Blah Blah) ;< b13h b1gn ) 1!
| prieg DIy
| S DT T ) Wy o
=GR BT

Ll LGN
Giar Blan) 111101210 BLeh

Both Diagrams from

WM

Erlang process-based, concurrency model
encounters bug that causes fatal error in process.

| S
2k yujpn
O DD [fr— RECI) ‘
ST GIBABIaR), EETEDR
v blah Biah (

(7 T— / \ N e
G : ) e =F oraTs
EHEs), i), VO — Sl Bion) | G E
e L e o 1)

Blah Bisn

blah bib Yook ol
) D 12.00¢
blah b1gh \i 7 (Bl Bish Sty
infBiaREah),,, >
=

\
gy,

Tk \ \ GEEE blah blah
s Bla Blah Jarch
), .y {BIBBIBIERY ahnnanEiagien),, =S
1dh bilan)111 (b1ah BIBA S \ 6Tah bian
a1 BEREIE),

blan Blan ST | BIanBIaR) 1111y,
/P e N S
), () 1 e CCIIE
= g bieh) 1 @1REE) T |

\
U
— blah Blan
blah b1Bh NI
00100 ) S
blah blah

blah Blah

fantastic Computerphile Youtube video: ‘Erlang Programming Language - Computerphile’
https://youtu.be/SOgQVoVai6s?t=603


https://youtu.be/SOqQVoVai6s?t=603

Distributed ° SI\,/(Iaar\r;()a/rins’[ances of a server rather than a single
Computing

e Hot swapping (live code reload)
e Fault tolerance lead naturally to scalability

e Dataflow impacted by physical architecture




Discussion
Questions!

Would you use Erlang if you were working on
distributed applications?

Should we let the rarity of a programming
language like Erlang dictate our decisions about
whether or not to use it? E.g. if Erlang is the best
choice for the backend of a startup, might it still
not be the best choice?

Are there any cons of the “Let it crash”
philosophy that Erlang employs?



