
Implementing Subroutines (2)

In Text: Chapter 10



Static Chain Maintenance

• The static chain must be modified for 
each subroutine call and return

• The return part is trivial
–When a subroutine terminates, its 

activation record is simply removed
• The call part is more complex
–When a subroutine is called, its activation 

record needs to be built
– Two methods to construct static links

N. Meng, S. Arthur 2



Static Link Construction 1

• When a subroutine is called, search the 
dynamic chain until the first one of the 
parent scope is found

• However, this search can be avoided by 
treating subroutine declarations and 
calls as variable definitions and 
references

N. Meng, S. Arthur 3



Static Link Construction 2
• At compile time, 
–When the compiler encounters a subroutine 

call A() in subroutine C, it determines the 
subroutine B which declares A

– It then computes the nesting_depth between 
C and B

– The information is stored and can be accessed 
by subroutine call during execution

–When A is called, the static link to B is 
determined by moving down the static chain of 
C() nesting_depth hops 

N. Meng, S. Arthur 4



Issues with Static Chains

• A nonlocal reference is slow if the 
nesting depth is large
– In practice, references to distant nonlocal 

variables are rare
• Time-critical code is challenging
– Costs of nonlocal references are difficult 

to determine
– Code modifications can change nesting 

depth, and therefore the cost

N. Meng, S. Arthur 5



Display

• An alternative to static chains to solve 
the problems

• Static links are stored in an auxiliary 
data structure called a display

• The content of the display is a list of 
addresses of accessible activation 
record instances

• However, it has not been found to be 
superior to the static-chain method

N. Meng, S. Arthur 6



Blocks

• Blocks are user-specified local scopes 
for variables

• An example in C

• The life time of the variable temp 
begins when control enters the block, 
and ends when control exits it

N. Meng, S. Arthur 7

{ int temp;
temp = list[upper];
list[upper] = list[lower];
list[lower] = temp;

}



Advantage

• The local variables inside blocks cannot 
interfere with any other variable with 
the same name but declared elsewhere 
in the program

N. Meng, S. Arthur 8



Implementing Blocks

• Two methods to implement block local 
variables
– Treat blocks as parameter-less subroutines
– Treat block variables as plain local variables

N. Meng, S. Arthur 9



Method 1

• Treat blocks as parameter-less 
subroutines that are always called from 
the same location
– Every block has an activation record
– An instance is created every time the block 

is executed
– However, blocks can be implemented in a 

simpler and more efficient way

N. Meng, S. Arthur 10



Method 2

• Insight
– The maximum amount of storage required for 

block variables can be statically determined, 
because blocks are entered and exited in 
strictly textual order

• The block variables are allocated after 
local variables in the activation record

• Offset for all block variables can be 
statically computed, so block variables 
can be addressed exactly as if they were 
local variables

N. Meng, S. Arthur 11



An Example

N. Meng, S. Arthur 12

void main() {
int x, y, z;
while (…) {

int a, b, c;
while (…) {
int d, e;

}
}

while (…) {
int f, g;

}
}



Implementing Dynamic Scoping

• Two possible ways to implement local 
and nonlocal variables in a dynamic-
scoped language
– Deep access
– Shallow access

• These are different from deep and 
shallow binding (different semantics)

• The semantics of dynamic scoping are 
unaltered by the access method

N. Meng, S. Arthur 13



Deep Access

• Nonlocal references are found by 
searching the activation record 
instances on the dynamic chain
– Length of the chain cannot be statically 

determined
– Every activation record instance must have 

variable names

N. Meng, S. Arthur 14



An Example

N. Meng, S. Arthur 15

How are the 
definitions of 
u and v found?

Local

Local v
uARI

for main



Shallow Access
• Key insight
–With dynamic scoping, there is at most one 

visible version of a variable of any specific 
name at a given time

• Have a separate stack for each variable 
name in a program
–When a variable is created, it is given a cell at 

the top of the stack for its name
– Every reference to the name is to the variable 

on top of the stack 
–When the subroutine terminates, all variables 

it declares are popped from stacks
16



Revisit the Example

N. Meng, S. Arthur 17



Another way to implement shallow access

• Use a central table that has a location for 
each different variable name in a program

• Along with each entry, a bit called active is 
maintained that indicates whether it has a 
current binding or variable association

• Any access to any variable can then be to 
an offset into the central table

• The offset can be static, so the access can 
be fast

N. Meng, S. Arthur 18



Central Table Maintenance

• When a subroutine is called, all of its 
local variables are logically placed in the 
central table
– If the position of the new variable is 

already active, the original value must be 
saved somewhere else

–When a variable begins its lifetime, the 
corresponding active bit must be set

N. Meng, S. Arthur 19



How to save values somewhere?

• Have a “hidden” stack on which all saved 
objects are stored
– Since subroutines are called and then 

return, the lifetimes of local variables are 
nested, so this works

• All saved variables are stored in the 
activation record of the subroutine that 
created the replacement variable
– The overhead is smaller because no extra 

stack is used

N. Meng, S. Arthur 20


