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Static Chain Maintenance

• The static chain must be modified for 
each subroutine call and return

• The return part is trivial
–When a subroutine terminates, its 

activation record is simply removed
• The call part is more complex
–When a subroutine is called, its activation 

record needs to be built
– Two methods to construct static links
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Static Link Construction 1

• When a subroutine is called, search the 
dynamic chain until the first one of the 
parent scope is found

• However, this search can be avoided by 
treating subroutine declarations and 
calls as variable definitions and 
references
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Static Link Construction 2
• At compile time, 
–When the compiler encounters a subroutine 

call A() in subroutine C, it determines the 
subroutine B which declares A

– It then computes the nesting_depth between 
C and B

– The information is stored and can be accessed 
by subroutine call during execution

–When A is called, the static link to B is 
determined by moving down the static chain of 
C() nesting_depth hops 
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Issues with Static Chains

• A nonlocal reference is slow if the 
nesting depth is large
– In practice, references to distant nonlocal 

variables are rare
• Time-critical code is challenging
– Costs of nonlocal references are difficult 

to determine
– Code modifications can change nesting 

depth, and therefore the cost
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Display

• An alternative to static chains to solve 
the problems

• Static links are stored in an auxiliary 
data structure called a display

• The content of the display is a list of 
addresses of accessible activation 
record instances

• However, it has not been found to be 
superior to the static-chain method
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Blocks

• Blocks are user-specified local scopes 
for variables

• An example in C

• The life time of the variable temp 
begins when control enters the block, 
and ends when control exits it
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{ int temp;
temp = list[upper];
list[upper] = list[lower];
list[lower] = temp;

}



Advantage

• The local variables inside blocks cannot 
interfere with any other variable with 
the same name but declared elsewhere 
in the program
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Implementing Blocks

• Two methods to implement block local 
variables
– Treat blocks as parameter-less subroutines
– Treat block variables as plain local variables
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Method 1

• Treat blocks as parameter-less 
subroutines that are always called from 
the same location
– Every block has an activation record
– An instance is created every time the block 

is executed
– However, blocks can be implemented in a 

simpler and more efficient way
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Method 2

• Insight
– The maximum amount of storage required for 

block variables can be statically determined, 
because blocks are entered and exited in 
strictly textual order

• The block variables are allocated after 
local variables in the activation record

• Offset for all block variables can be 
statically computed, so block variables 
can be addressed exactly as if they were 
local variables
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An Example
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void main() {
int x, y, z;
while (…) {

int a, b, c;
while (…) {
int d, e;

}
}

while (…) {
int f, g;

}
}



Implementing Dynamic Scoping

• Two possible ways to implement local 
and nonlocal variables in a dynamic-
scoped language
– Deep access
– Shallow access

• These are different from deep and 
shallow binding (different semantics)

• The semantics of dynamic scoping are 
unaltered by the access method
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Deep Access

• Nonlocal references are found by 
searching the activation record 
instances on the dynamic chain
– Length of the chain cannot be statically 

determined
– Every activation record instance must have 

variable names
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An Example
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How are the 
definitions of 
u and v found?

Local

Local v
uARI

for main



Shallow Access
• Key insight
–With dynamic scoping, there is at most one 

visible version of a variable of any specific 
name at a given time

• Have a separate stack for each variable 
name in a program
–When a variable is created, it is given a cell at 

the top of the stack for its name
– Every reference to the name is to the variable 

on top of the stack 
–When the subroutine terminates, all variables 

it declares are popped from stacks
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Revisit the Example
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Another way to implement shallow access

• Use a central table that has a location for 
each different variable name in a program

• Along with each entry, a bit called active is 
maintained that indicates whether it has a 
current binding or variable association

• Any access to any variable can then be to 
an offset into the central table

• The offset can be static, so the access can 
be fast
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Central Table Maintenance

• When a subroutine is called, all of its 
local variables are logically placed in the 
central table
– If the position of the new variable is 

already active, the original value must be 
saved somewhere else

–When a variable begins its lifetime, the 
corresponding active bit must be set
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How to save values somewhere?

• Have a “hidden” stack on which all saved 
objects are stored
– Since subroutines are called and then 

return, the lifetimes of local variables are 
nested, so this works

• All saved variables are stored in the 
activation record of the subroutine that 
created the replacement variable
– The overhead is smaller because no extra 

stack is used
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