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General Semantics of Calls and 
Returns

• The subroutine call and return 
operations are together called 
subroutine linkage

• The implementation of subroutines must 
be based on the semantics of the 
subroutine linkage
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Semantics of a subroutine call

• Save the execution status of the 
current program unit

• Pass the parameters
• Pass the return address to the callee
• Transfer control to the callee
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Semantics of a subroutine return

• If there are pass-by-value-result or 
out-mode parameters, the current 
values of those parameters are moved 
to the corresponding actual parameters

• Move the return value to a place 
accessible to the caller

• The execution status of the caller is 
restored

• Control is transferred back to the 
caller
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Storage of Information

• The call and return actions require 
storage for the following:
– Status information about the caller
– Parameters
– Return address 
– Return value for functions
– Local variables
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Implementing “simple” subroutines

• Simple subroutines are those that 
cannot be nested and all local variables 
are static

• A simple subroutine consists of two 
parts: code and data
– Code: constant (instruction space)
– Data: can change when the subroutine is 

executed (data space)
– Both parts have fixed sizes
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Activation Record

• The format, or layout, of the data part 
is called an activation record, because 
the data is relevant to an activation, or 
execution, of the subroutine

• The form of an activation record is 
static

• An activation record instance is a 
concrete example of an activation 
record, corresponding to one execution
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An activation record for simple 
subroutine
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• Since the activation record instance of 
a “simple” subprogram has fixed size, it 
can be statically allocated

• Actually, it could be attached to the 
code part of the subprogram



The code and activation records of a 
program with simple subroutines

• Four program units—MAIN, A, B, and C
• MAIN calls A, B, and C
• Originally, all four programs may be 

compiled at different times individually 
• When each program is compiled, its 

machine code, along with a list of 
references to external subprograms are 
written to a file
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How is the code linked?

• A linker is called for MAIN to 
create an executable program
– Linker is part of the OS
– Linker is also called loader, 

linker/loader, or link editor
– It finds and loads all referenced 

subroutines, including code and 
activation records, into memory

– It sets the target addresses of calls 
to those subroutines’ entry 
addresses
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Assumptions so far…

• All local variables are statically 
allocated

• No function recursion
• No value returned from any function
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Call Stack

• Call stack is a stack data structure that 
stores information about the active 
subroutines of a program

• Also known as execution stack, control 
stack, runtime-stack, or machine stack

• Large array which typically grows 
downwards in memory towards lower 
addresses, shrinks upwards
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Call Stack

• Push(r1):
stack_pointer--;
M[stack_pointer] = r1;

• r1 = Pop();
r1 = M[stack_pointer];
stack_pointer++;
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Call Stack
• When a function is invoked, its activation 

record is created dynamically and pushed 
onto the stack

• When a function returns, its activation 
record is popped from the stack

• The activation record on stack is also called 
stack frame

• Stack pointer(sp): points to the frame top
• Frame pointer(fp): points to the frame base
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Implementing subroutines with 
stack-dynamic local variables

• One important advantage of stack-
dynamic local variables is support for 
recursion

• The implementation requires more 
complex activation records
– The compiler must generate code to cause 

the implicit allocation and deallocation of 
local variables
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More complex 
activation records

N. Meng, S. Arthur 17

• Since the return address, dynamic link, 
and parameters are placed in the 
activation record instance by the caller, 
these entries must appear first

• Local variables are allocated and 
possibly initialized in the callee, so they 
appear last 



Dynamic Link (control link) = previous sp

• Used in the destruction of the current 
activation record instance when the 
procedure completes its execution

• To restore the sp in previous frame 
(caller)

• The collection of dynamic links in the 
stack at a given time is called the dynamic 
chain, or call chain, which represents the 
dynamic history of how execution got to 
its current position
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Why do we need 
dynamic links?

• The dynamic link is required in some 
cases, because there are other allocations 
from the stack by a subroutine beyond its 
activation record, such as temporaries

• Even though the activation record size is 
known, we cannot simply add the size to 
the stack pointer to remove the activation 
record

• Access nonlocal variables in dynamic 
scoped languages N. Meng, S. Arthur 19

Temporaries



An Example without Recursion
void fun1(float r) {

int s, t;
… ß---------1
fun2(s);

}
void fun2(int x) {

int y;  
…  ß--------2
fun3(y);
…

}
void fun3(int q) {

… ß---------3
}
void main() {

float p;
…
fun1(p);
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• Call sequence:
main -> fun1 -> fun2 -> fun3

• What is the stack content at 
points labeled as 1, 2, and 3?
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Local Variable Allocation

• Local scalar variables are bound to 
storage within an activation record 
instance

• Local variables that are structures are 
sometimes allocated elsewhere, and only 
leave their descriptors and a pointer to 
the storage as part of the activation 
record
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An Example
void sub(float total, int part) {

int list[5];
float sum;
…

}
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Recursion

• Function recursion means that a 
function can eventually call itself

• Recursion adds the possibility of 
multiple simultaneous activations of a 
subroutine at a given time, with at least 
one call from outside the subroutine, 
and one or more recursive calls

• Each activation requires its own 
activation record instance
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An Example
int factorial(int n) {

if (n <= 1)
return 1;

else return (n * factorial(n - 1));
}
void main() {

int value;
value = factorial (3);

}

N. Meng, S. Arthur 25

How does the 
stack change?



Implementing nested subroutines

• Some static-scoped languages use 
stack-dynamic local variables and allow 
subroutines to be nested
– FORTRAN 95, Ada, Python, and JavaScript

• Challenge
– How to access nonlocal variables?
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Two-step access process

• Find the activation record instance on 
the stack where the variable was 
allocated 
– more challenging and more difficult

• Use the local_offset of the variable to 
access it
– local_offset describes the offset from the 

beginning/bottom of an activation record
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Key Observations

• In a given subroutine, only variables 
that are declared in static ancestor 
scopes are visible and can be accessed

• Activation record instances of all static 
ancestors are always on the stack when 
variables in them are referenced by a 
nested subroutine: A subroutine is 
callable only when all its static 
ancestors are active

N. Meng, S. Arthur 28



Finding Activation Record Instance

• Static chaining
– A new pointer, static link (static scope 

pointer or access link), is used to point to 
the bottom of an activation record instance 
of the static parent

– The pointer is used for access to nonlocal 
variables

– Typically, the static link appears below 
parameters in an activation record
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Finding Activation Record Instance 
(cont’d)

• A static chain is a chain of 
static links that connect the 
activation record instances of 
all static ancestors for an 
executing subroutine

• This chain can be used to 
implement nonlocal variable 
access
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Finding Activation Record Instance 
(cont’d)

• With static links, finding the correct 
activation record instance is simple
– Search the static chain until a static 

ancestor is found to contain the variable
• However, the implementation can be 

even simpler
– Compiler identifies both nonlocal 

references, and the length of static chain 
to follow to reach the correct record
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Finding Activation Record Instance 
(cont’d)

• static_depth is an integer associated with a 
static scope that indicates how deeply it is 
nested in the outermost scope

• The difference between the static_depth
of a nonlocal reference and the 
static_depth of the variable definition is 
called nesting_depth, or chain_depth, of 
the reference

• Each reference is represented with  an 
ordered integer pair (chain_offset, 
local_offset)
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An Ada Example
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procedure Main_2 is

What is the static 
depth for each 
procedure?
What is the 
representation of 
A at points 1, 2, 
and 3?



Stack Contents
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procedure Main_2 is


