
Implementing Subprograms

In Text: Chapter 10

Outline

• General semantics of calls and returns
• Implementing “simple” subroutines
• Call Stack
• Implementing subroutines with stack-

dynamic local variables
• Nested programs

N. Meng, S. Arthur 2

General Semantics of Calls and
Returns

• The subroutine call and return
operations are together called
subroutine linkage

• The implementation of subroutines must
be based on the semantics of the
subroutine linkage

N. Meng, S. Arthur 3

Semantics of a subroutine call

• Save the execution status of the
current program unit

• Pass the parameters
• Pass the return address to the callee
• Transfer control to the callee

N. Meng, S. Arthur 4

Semantics of a subroutine return

• If there are pass-by-value-result or
out-mode parameters, the current
values of those parameters are moved
to the corresponding actual parameters

• Move the return value to a place
accessible to the caller

• The execution status of the caller is
restored

• Control is transferred back to the
caller

N. Meng, S. Arthur 5

Storage of Information

• The call and return actions require
storage for the following:
– Status information about the caller
– Parameters
– Return address
– Return value for functions
– Local variables

N. Meng, S. Arthur 6

Implementing “simple” subroutines

• Simple subroutines are those that
cannot be nested and all local variables
are static

• A simple subroutine consists of two
parts: code and data
– Code: constant (instruction space)
– Data: can change when the subroutine is

executed (data space)
– Both parts have fixed sizes

N. Meng, S. Arthur 7

Activation Record

• The format, or layout, of the data part
is called an activation record, because
the data is relevant to an activation, or
execution, of the subroutine

• The form of an activation record is
static

• An activation record instance is a
concrete example of an activation
record, corresponding to one execution

N. Meng, S. Arthur 8

An activation record for simple
subroutine

N. Meng, S. Arthur 9

• Since the activation record instance of
a “simple” subprogram has fixed size, it
can be statically allocated

• Actually, it could be attached to the
code part of the subprogram

The code and activation records of a
program with simple subroutines

• Four program units—MAIN, A, B, and C
• MAIN calls A, B, and C
• Originally, all four programs may be

compiled at different times individually
• When each program is compiled, its

machine code, along with a list of
references to external subprograms are
written to a file

N. Meng, S. Arthur 10

How is the code linked?

• A linker is called for MAIN to
create an executable program
– Linker is part of the OS
– Linker is also called loader,

linker/loader, or link editor
– It finds and loads all referenced

subroutines, including code and
activation records, into memory

– It sets the target addresses of calls
to those subroutines’ entry
addresses

N. Meng, S. Arthur 11

Assumptions so far…

• All local variables are statically
allocated

• No function recursion
• No value returned from any function

N. Meng, S. Arthur 12

Call Stack

• Call stack is a stack data structure that
stores information about the active
subroutines of a program

• Also known as execution stack, control
stack, runtime-stack, or machine stack

• Large array which typically grows
downwards in memory towards lower
addresses, shrinks upwards

N. Meng, S. Arthur 13

Call Stack

• Push(r1):
stack_pointer--;
M[stack_pointer] = r1;

• r1 = Pop();
r1 = M[stack_pointer];
stack_pointer++;

N. Meng, S. Arthur 14

Call Stack
• When a function is invoked, its activation

record is created dynamically and pushed
onto the stack

• When a function returns, its activation
record is popped from the stack

• The activation record on stack is also called
stack frame

• Stack pointer(sp): points to the frame top
• Frame pointer(fp): points to the frame base

N. Meng, S. Arthur 15

Implementing subroutines with
stack-dynamic local variables

• One important advantage of stack-
dynamic local variables is support for
recursion

• The implementation requires more
complex activation records
– The compiler must generate code to cause

the implicit allocation and deallocation of
local variables

N. Meng, S. Arthur 16

More complex
activation records

N. Meng, S. Arthur 17

• Since the return address, dynamic link,
and parameters are placed in the
activation record instance by the caller,
these entries must appear first

• Local variables are allocated and
possibly initialized in the callee, so they
appear last

Dynamic Link (control link) = previous sp

• Used in the destruction of the current
activation record instance when the
procedure completes its execution

• To restore the sp in previous frame
(caller)

• The collection of dynamic links in the
stack at a given time is called the dynamic
chain, or call chain, which represents the
dynamic history of how execution got to
its current position

N. Meng, S. Arthur 18

Why do we need
dynamic links?

• The dynamic link is required in some
cases, because there are other allocations
from the stack by a subroutine beyond its
activation record, such as temporaries

• Even though the activation record size is
known, we cannot simply add the size to
the stack pointer to remove the activation
record

• Access nonlocal variables in dynamic
scoped languages N. Meng, S. Arthur 19

Temporaries

An Example without Recursion
void fun1(float r) {

int s, t;
… ß---------1
fun2(s);

}
void fun2(int x) {

int y;
… ß--------2
fun3(y);
…

}
void fun3(int q) {

… ß---------3
}
void main() {

float p;
…
fun1(p);

} N. Meng, S. Arthur 20

• Call sequence:
main -> fun1 -> fun2 -> fun3

• What is the stack content at
points labeled as 1, 2, and 3?

N. Meng, S. Arthur 21

p p p

Local Variable Allocation

• Local scalar variables are bound to
storage within an activation record
instance

• Local variables that are structures are
sometimes allocated elsewhere, and only
leave their descriptors and a pointer to
the storage as part of the activation
record

N. Meng, S. Arthur 22

An Example
void sub(float total, int part) {

int list[5];
float sum;
…

}

N. Meng, S. Arthur Return address

Dynamic link

Parameter

Parameter

Local

Local

Local

Local

Local

Local

total

part

list[0]

list[1]

list[2]

list[3]

list[4]

sum

23

Recursion

• Function recursion means that a
function can eventually call itself

• Recursion adds the possibility of
multiple simultaneous activations of a
subroutine at a given time, with at least
one call from outside the subroutine,
and one or more recursive calls

• Each activation requires its own
activation record instance

N. Meng, S. Arthur 24

An Example
int factorial(int n) {

if (n <= 1)
return 1;

else return (n * factorial(n - 1));
}
void main() {

int value;
value = factorial (3);

}

N. Meng, S. Arthur 25

How does the
stack change?

Implementing nested subroutines

• Some static-scoped languages use
stack-dynamic local variables and allow
subroutines to be nested
– FORTRAN 95, Ada, Python, and JavaScript

• Challenge
– How to access nonlocal variables?

N. Meng, S. Arthur 26

Two-step access process

• Find the activation record instance on
the stack where the variable was
allocated
– more challenging and more difficult

• Use the local_offset of the variable to
access it
– local_offset describes the offset from the

beginning/bottom of an activation record

N. Meng, S. Arthur 27

Key Observations

• In a given subroutine, only variables
that are declared in static ancestor
scopes are visible and can be accessed

• Activation record instances of all static
ancestors are always on the stack when
variables in them are referenced by a
nested subroutine: A subroutine is
callable only when all its static
ancestors are active

N. Meng, S. Arthur 28

Finding Activation Record Instance

• Static chaining
– A new pointer, static link (static scope

pointer or access link), is used to point to
the bottom of an activation record instance
of the static parent

– The pointer is used for access to nonlocal
variables

– Typically, the static link appears below
parameters in an activation record

N. Meng, S. Arthur 29

Finding Activation Record Instance
(cont’d)

• A static chain is a chain of
static links that connect the
activation record instances of
all static ancestors for an
executing subroutine

• This chain can be used to
implement nonlocal variable
access

N. Meng, S. Arthur 30

Local variables

Parameters

Dynamic link

Static link

Return address

Finding Activation Record Instance
(cont’d)

• With static links, finding the correct
activation record instance is simple
– Search the static chain until a static

ancestor is found to contain the variable
• However, the implementation can be

even simpler
– Compiler identifies both nonlocal

references, and the length of static chain
to follow to reach the correct record

N. Meng, S. Arthur 31

Finding Activation Record Instance
(cont’d)

• static_depth is an integer associated with a
static scope that indicates how deeply it is
nested in the outermost scope

• The difference between the static_depth
of a nonlocal reference and the
static_depth of the variable definition is
called nesting_depth, or chain_depth, of
the reference

• Each reference is represented with an
ordered integer pair (chain_offset,
local_offset)

N. Meng, S. Arthur 32

An Ada Example

N. Meng, S. Arthur 33

procedure Main_2 is

What is the static
depth for each
procedure?
What is the
representation of
A at points 1, 2,
and 3?

Stack Contents

N. Meng, S. Arthur

procedure Main_2 is

