
Prolog

In Text: Chapter 16

Prolog

•  A logic programming language
•  Prolog programs consist of collections of

statements
•  There are only a few kinds of statements

in Prolog, but they can be complex
– Fact statements, rule statements, and goal

statements
•  All prolog statements are constructed

from terms
N.	Meng,	S.	Arthur	 2	

Fact Statements

•  Correspond to Headless Horn clauses
•  Fact statements are propositions that

are assumed to be true, and from which
new information can be inferred

•  E.g., female(shelley).
 female(mary).
 mother(mary, shelley).

N.	Meng,	S.	Arthur	 3	

Rule Statements

•  Correspond to Headed Horn clauses
•  They describe implication rules between

propositions, or logical relationship
between them: if a set of given
conditions are satisfied, what conclusion
can be drawn

•  The consequent of a statement is a
single term, while the antecedent can be
either a single term or conjunction

N.	Meng,	S.	Arthur	 4	

Conjunctions

•  The AND operation in conjunctions is
implied in Prolog

•  The structures that specify atomic
propositions in a conjunction are
separated by commas

•  The commas can be considered as AND
operators

N.	Meng,	S.	Arthur	 5	

Rule Statements

•  E.g., grandparent(X, Z) :- parent(X, Y),
parent(Y, Z),
where X, Y, and Z are universal objects
– It states that if there are instantiations of

X, Y, and Z such that parent (X, Y) is true,
and parent (Y, Z) is true, then for those
same instantiations of X, Y, and Z,
grandparent(X, Z) is true

N.	Meng,	S.	Arthur	 6	

Goal Statements
•  Also correspond to Headless Horn clauses
•  Goal statements are propositions

describing the theorem that we want the
system to either prove or disprove
– E.g., man(fred)

•  Because goal statements and some nongoal
statements have the same form, a Prolog
implementation must have some means to
distinguish between the two

N.	Meng,	S.	Arthur	 7	

Goal Statement

 (assert(rainy(seattle))).
 (assert(rainy(rochester))).
 rainy(C).
The Prolog interpreter would respond
with:
 C = seattle
Seattle is returned first, because it
comes first in the database

N.	Meng,	S.	Arthur	 8	

Goal Statement

•  If we want to find all possible solutions,
we can ask the interpreter to continue
by typing a semicolon:
 C = seattle ;

 C = rochester.

N.	Meng,	S.	Arthur	 9	

Another Example

 (assert(takes(jane_doe, his201)).
 (assert(takes(jane_doe, cs254)).
 (assert(takes(ajit_chandra, art302)).
 (assert(takes(ajit_chandra, cs254)).
 (assert((classmates(X, Y) :- takes(X,
Z), takes(Y, Z))).

What does the following query return?
 classmates(jane_doe, X).

N.	Meng,	S.	Arthur	 10	

 X = jane_doe;
 X = jane_doe;
 X = ajit_chandra.
How should we modify the rule so that
the student is not considered as a
classmate of himself or herself?

N.	Meng,	S.	Arthur	 11	

classmates(X, Y) :- takes(X, Z),
takes(Y, Z), X\=Y.

•  Can we define propositions in the
following way?
takes(jane doe, his201).

N.	Meng,	S.	Arthur	 12	

•  No. The prolog interpreter will complain.
Instead, we can define the proposition
as below:

 takes(‘jane doe’, his201).

Prolog Programs

•  ASSERT (define)
– FACTS about OBJECTS
– RULES(“CLAUSES”) that inter-relate facts

•  Ask QUESTIONS about objects and
their relationship
– GOALS

N.	Meng,	S.	Arthur	 13	

Some Prolog FACTS

| ?- (assert (father (michael, cathy))).
| ?- (assert (father (chuck, michael))).
| ?- (assert (father (chuck, julie))).
| ?- (assert (father (david, chuck))).
| ?- (assert (father (sam, melody))).
| ?- (assert (mother (cathy, melody))).
| ?- (assert (mother (hazel, michael))).
| ?- (assert (mother (hazel, julie))).
| ?- (assert (mother (melody, sandy))).
| ?- (assert (made_of (moon, green_cheese))).

N.	Meng,	S.	Arthur	 14	

Some Prolog RULES
•  A person’s parent is their mother or father
| ?- (assert ((parent(X, Y) :- father(X, Y); mother (X, Y)))).

•  A person’s grandfather is the father of one
of their parents

| ?- (assert ((grandfather(X,Y) :- father(X, A), parent(A,
Y)))).

N.	Meng,	S.	Arthur	 15	

Some Prolog QUESTIONS

•  Is chuck the parent of julie ?
 | ?- parent(chuck, julie).

•  Is john the father of cathy ?
 | ?- father(john, cathy).

N.	Meng,	S.	Arthur	 16	

Note:		
• 			No	“assert”s	
• 			No	use	of	variables	

Prolog Notes
•  atoms: symbolic values of Prolog
– father (bill, mike)
– Strings of letters, digits, and underscores

starting with a lower case letter
•  variable: unbound entity
– father (X, mike)
– Strings of letters, digits, and underscores

starting with an UPPER CASE letter
– Variables are not bound to type by declaration

N.	Meng,	S.	Arthur	 17	

Prolog Notes

•  FACTS: UNCONDITIONAL
ASSERTIONS OF “TRUTH”
 (assert(mother(carol, jim))).
– assumed to be true
– contains no variables
– stored in database

N.	Meng,	S.	Arthur	 18	

Prolog Notes

•  RULES: ASSERTIONS from which
conclusions can be drawn if given
conditions are true
 (assert((parent(X, Y) :-father(X, Y);
mother (X, Y)))).
– contains variables for instantiation
– also stored in database

N.	Meng,	S.	Arthur	 19	

An Example

N.	Meng,	S.	Arthur	 20	

 | ?- (assert(color(banana, yellow))).
 | ?- (assert(color(squash, yellow))).
 | ?- (assert(color(apple, green))).
 | ?- (assert(color(peas, green))).

 FACTS
 | ?- (assert(fruit(banana))).
 | ?- (assert(fruit(apple))).
 | ?- (assert(vegetable(squash))).
 | ?- (assert(vegetable(peas))).

 bob eats green colored vegetables
 RULE | ?- (assert((eats(bob, X) :- color(X,

green), vegetable(X)))).

An Example

N.	Meng,	S.	Arthur	 21	

What does bob eat ?
 | ?- eats(bob, X).
 color(banana, green) => no
 color(squash, green) => no
 color(apple, green) => yes
 vegetable(apple) => no
 color(peas, green) => yes
 vegetable(peas) => yes

Does bob eat apples ?
 | ?- eats(bob, apple).
 color(apple, green) => match
 vegetable(apple) => no

Does bob eat squash ?
 | ?- eats(bob, squash).
 color(squash, green) => no

 (assert ((eats(bob, X) :-
 color(X, green),
 vegetable(X)))).

therefore X = peas

false

false

Prolog Notes

INSTANTIATION: binding of a variable
to value (and thus, a type)

UNIFICATION: Process of finding an
instantiation of a variable for which
“match” is found in the database of facts
and rules

N.	Meng,	S.	Arthur	 22	

Instantiation & Unification

N.	Meng,	S.	Arthur	 23	

Prolog Notes

•  DISJUNCTIVE RULES: X if Y or Z
 (assert ((parent(X, Y) :- father(X, Y)))).
 (assert ((parent(X, Y) :- mother(X, Y)))).
or
 (assert ((parent(X, Y) :- father(X, Y);

mother(X, Y)))).

N.	Meng,	S.	Arthur	 24	

Prolog Notes

•  CONJUNCTIVE RULES: X if Y AND Z
 (assert((father(X, Y) :- parent(X, Y),

male(X)))).
•  NEGATION RULES: X if Not Y

 (assert((good(X) :- not(bad(X))))).
 (assert((mother(X, Y) :- parent(X, Y),
not(male(X))))).

N.	Meng,	S.	Arthur	 25	

“Older” Example
older(george, john).
older(alice, george).
older(john, mary).
older(X, Z) :- older(X, Y), older(Y, Z).

N.	Meng,	S.	Arthur	 26	

N.	Meng,	S.	Arthur	 27	

•  When we ask a query that will result in
TRUE, we get the right answer:
 ?- older(george, mary).

•  When we ask a query that will result in
FALSE, we get into an endless loop
 ?- older(mary, john).

Left Recursion Problem

•  The first element in older is the predicate
that is repeatedly tried

•  To solve the problem, remove the older
rule and replace with:
 is_older(X, Y) :- older(X, Y).
 is_older(X, Z) :- older(X, Y),
is_older(Y, Z).

•  Now:
 ?- is_older(mary, john).
 false

N.	Meng,	S.	Arthur	 28	

Prolog Notes

•  Prolog is more than “LOGIC”
– Math
– List manipulation

N.	Meng,	S.	Arthur	 29	

Consult File Format

•  File x.pl:
 husband(tommy, claudia).
 husband(mike, effie).
 mother(claudia, sannon).
 mother(effie, jamie).
 father(X, Y) :- mother(W, Y), husband(X, W).
 parent(X, Y) :-father(X, Y); mother(X, Y).

•  Note: No assert’s, but can still state
Facts and Rules

N.	Meng,	S.	Arthur	 30	

[x]. or consult(x).

Consult File

•  Cannot state question/goal in a consult file

N.	Meng,	S.	Arthur	 31	

	|	?-	consult(x).	

Suggested Approach to Specifying
Solution

•  Use a consult file to define facts and
rules
– Instantiate prolog
– “consult” file interactively
– Interactively ask questions to see if facts/

rules yield expected results
– Change consult as needed

•  Need to reinitiate prolog and re”consult”

N.	Meng,	S.	Arthur	 32	

Suggested Approach to Specifying
Solution (cont’d)

•  Construct I/O redirected file to
include
– Consult file and queries, e.g.,

– You may use “;” to ask “Is there
another answer?”
•  The initial query CANNOT have anything

on the line after the “.”, and
•  There must be a blank line after “;”

N.	Meng,	S.	Arthur	 33	

<	input.fle	swipl	

input.fle	
consult(cnslt).				
query1.	
;	
	
query2.	
	

SWI-Prolog: Access & Nuance

•  SWI-Prolog on Rlogin is located in the
directory:
– /home/staff/arthur/bin/swipl

•  swipl prints output to STDERR (file
descriptor 2). To redirect output to a
file you must precede “>” with a “2” :
– swipl < input.fle 2> output.fle

N.	Meng,	S.	Arthur	 34	

Prolog – Issues/Limitations

•  “Closed World”
– the only truth is that known to the system

•  Efficiency
– theorem proving can be extremely time

consuming
•  Resolution order control
– Prolog always starts with left side of a goal,

and always searches database from the top.
You have some control by choice of order in
the propositions and by structuring database.

N.	Meng,	S.	Arthur	 35	

Prolog – Issues/Limitations

– Prolog uses backward chaining (start with
goal and attempt to find sequence of
propositions that leads to facts in the
database).

– In some cases forward chaining (start with
facts in the database and attempt to find a
sequence of propositions that leads to the
goal) can be more efficient.

– Prolog always searches depth-first, though
breadth-first can work better in some
cases.

N.	Meng,	S.	Arthur	 36	

