Logic Programming, Prolog
Overview

- Logic programming
- Formal logic
- Prolog
Logic Programming

• To express programs in a form of symbolic logic, and use a logic inferencing process to produce results
 – Symbolic logic is the study of symbolic abstractions that capture the formal features of logical inference

• Logic programs are declarative
Formal Logic

• A **proposition** is a logical statement or query about the state of the “universe”
 – It consists of objects and the relationship between objects

• **Formal logic** was developed to describe propositions, with the goal of allowing those formally stated propositions to be checked for validity
Symbolic Logic

• **Symbolic logic** can be used for three basic needs of formal logic
 – To express propositions,
 – To express the relationship between propositions, and
 – To describe how new propositions can be inferred from other propositions that are assumed to be true
Formal logic & mathematics

• Most of mathematics can be thought of in terms of logic
• The fundamental axioms of number and set theory are the initial set of propositions, which are assumed to be true
• Theorems are the additional propositions that can be inferred from the initial set
First-Order Predicate Calculus

• The particular form of symbolic logic that is used for logic programming is called \textit{first-order predicate calculus}.

• It contains \textit{propositions and clausal form}.
Propositions

• The objects in propositions are represented by simple terms
 – Simple terms can be either constants or variables
 – A constant is a symbol that represents an object
 – A variable is a symbol that can represent different objects at different times
Propositions (cont’d)

• The simplest propositions, which are called \textit{atomic propositions}, consist of compound terms

• A \textit{compound term} represents mathematical relation. It contains
 – a functor: the function symbol that names the relation, and
 – an ordered list of parameters
Compound Terms

• A compound term with a single parameter is a 1-tuple
 – E.g. man(jake)

• A compound term with two parameters is a 2-tuple
 – E.g., like(bob, steak)
Compound Terms

• All of the simple terms in the propositions, such as man, jake, like, bob, and steak, are constants.
• They mean whatever we want them to mean – E.g., like(bob, steak) may mean
 • Bob likes steak, or
 • steak likes Bob, or
 • Bob is in some way similar to a steak, or
 • Does Bob like steak?
• Propositions can also contain variables, such as man(X)
Compound Propositions

- Atomic proposition(s) are connected by logical connectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>¬</td>
<td>¬a</td>
<td>not a</td>
</tr>
<tr>
<td>conjunction</td>
<td>∩</td>
<td>a ∩ b</td>
<td>a and b</td>
</tr>
<tr>
<td>disjunction</td>
<td>∪</td>
<td>a ∪ b</td>
<td>a or b</td>
</tr>
<tr>
<td>equivalence</td>
<td>≡</td>
<td>a ≡ b</td>
<td>a is equivalent to b</td>
</tr>
<tr>
<td>implication</td>
<td>⊃</td>
<td>a ⊃ b</td>
<td>a implies b</td>
</tr>
<tr>
<td></td>
<td>⊆</td>
<td>a ⊆ b</td>
<td>b implies a</td>
</tr>
</tbody>
</table>
Compound Propositions (cont’d)

• Quantifiers—used to bind variables in propositions
 – Universal quantifier: \(\forall \)
 \(\forall X. P \) — means “for all \(X \), \(P \) is true”
 – Existential quantifier: \(\exists \)
 \(\exists X. P \) — means “there exists a value of \(X \) such that \(P \) is true”
 – Examples
 • \(\forall X. (\text{manager}(X) \supset \text{employee}(X)) \)
 • \(\exists X. (\text{mother}(\text{mary}, X) \cap \text{male}(X)) \)
Clausal Form

• **Clausal form** is a standard form of propositions
• It can be used to simplify computation by an automated system
Clausal Form

• A proposition in clausal form has the following general syntax:
 \[B_1 \cup B_2 \cup \ldots \cup B_n \subset A_1 \cap A_2 \cap \ldots \cap A_m \]

 \[\text{consequent} \quad \text{antecedent} \]

• Consequent is the consequence of the truth of the antecedent

• Meaning
 – If all of the A’s are true, then at least one B is true
Examples

- $\text{likes}(\text{bob}, \text{mcintosh}) \subseteq \text{likes}(\text{bob}, \text{apple}) \cap \text{apple}(\text{mcintosh})$
- $\text{father}(\text{john}, \text{alvin}) \cup \text{father}(\text{john}, \text{alice}) \subseteq \text{father}(\text{alvin}, \text{bob}) \cap \text{mother}(\text{alice}, \text{bob}) \cap \text{grandfather}(\text{john}, \text{bob})$
Predicate Calculus

- **Predicate calculus** describes collections of propositions
- **Resolution** is the process of inferring propositions from given propositions
- Resolution can detect any inconsistency in a given set of proposition
An Exemplar Resolution

• If we know:
 older(terry, jon) ⊂ mother(terry, jon)
 wiser(terry, jon) ⊂ older(terry, jon)

• We can infer the proposition:
 wiser(terry, jon) ⊂ mother(terry, jon)
Horn Clauses

• When propositions are used for resolution, only **Horn clauses** can be used

• A proposition with zero or one term in the consequent is called a **Horn clause**
 – If there is only one term in the consequence, the clause is called a **Headed Horn clause**
 • E.g., `person(jake) ⊂ man(jake)`
 • For stating **Inference Rules** in Prolog
 – If there is no term in the consequence, the clause is called a **Headless Horn clause**
 • E.g., `man(jake)`
 • For stating **Facts and Queries** in Prolog
Logic Programming Languages

• Logical programming languages are declarative languages

• **Declarative semantics**: It is simple to determine the meaning of each statement, and it does not depend on how the statement might be used to solve a problem

 – E.g., the meaning of a proposition can be concisely determined from the statement itself
Logic Programming Languages (cont’d)

• Logical Programming Languages are nonprocedural
• Instead of specifying how a result is computed, we describe the desired result and let the computer figure out how to compute it
An Example

• E.g., sort a list
 \[
 \text{sort}(\text{new_list}, \text{old_list}) \subseteq \text{permute}(\text{old_list}, \text{new_list}) \cap \text{sorted}(\text{new_list})
 \]
 \[
 \text{sorted}(\text{list}) \subseteq \forall j \text{ such that } 1 \leq j < n, \text{ list}(j-1) \leq \text{list}(j)
 \]

where permute is a predicate that returns true if its second parameter is a permutation of the first one.
Key Points about Logic Programming

• Nonprocedural programming sounds like the mere production of concise software requirements specifications
 – It is a fair assessment
• Unfortunately, logic programs that use only resolution face the problems of execution efficiency
• The best form of a logic language has not been determined
• Good methods of creating programs in logic programming languages have not yet been developed