FP Foundations, Scheme

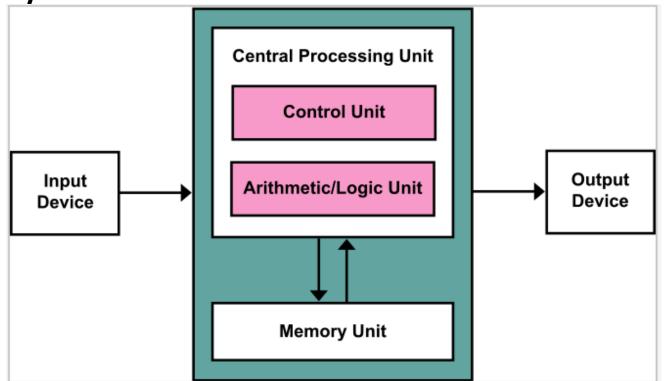
In Text: Chapter 15

Outline

- Mathematical foundations
- Functional programming
- λ -calculus
- LISP
- Scheme

Imperative Languages

- We have been discussing imperative languages
 - C/C++, Java, and Pascal are imperative languages
 - They follow the von Neumman architecture [1]



Functional Programming

- A different way of looking at things
 - It is based on mathematical functions
 - It is supported by functional and applicative programming languages
 - LISP, ML, Haskell

Mathematical Foundations

- A mathematical function is a mapping of members from one set to another set
 - The "input" set is called the domain
 - The "output" set is called the range

Mathematical Foundations

- The evaluation order of mapping expressions is controlled by recursion and conditional expressions, rather than by the sequencing and iterative repetition
- Functions do not have states
 - They have no side effects
 - They always produce the same output given the same input parameters

Simple Functions

- Usual form: function name + a list of parameters in parentheses + mapping expression
- E.g., cube(x) = x * x * x, where
 - both the domain and range sets are real numbers, and
 - x can represent any member of the domain set, but it is fixed to represent one specific element during the expression evaluation

Function Application

- It is specified by paring the function name with a particular element of the domain set
- The range element is obtained by evaluating the function-mapping expression with the domain element substituted for the particular element Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

Functional Forms

- A higher-order function, or functional form, is one that either takes functions as parameters, or yields a function as its result, or both
- Two common functional forms
 - Function composition
 - Apply-to-all

Function Composition

- Function composition has two functional parameters and yields a function whose value is the first function applied to the result of the second
- It is written as an expression, using a ° operator (called "circle" or "round")

$$-E.g., h = f \circ g$$

if f(x) = x + 2, and
g(x) = 3 * x
then h(x) = f(g(x)) = (3 * x) + 2

Apply-to-all

- Apply-to-all takes a single function as a parameter
- If applied to a list of arguments, apply-toall applies its functional parameter to each element of the list, and then collects results in a list or sequence

Lambda expression

- Early theoretical work on functions separated the task of defining a function from that of naming the function
- Lambda notation, $\lambda,$ provides a method for defining nameless functions
- A lambda expression is a function, which specifies the parameters, and the mapping expression

$$-E.g., \lambda(x)x * x * x$$

Lambda-Calculus

 In the mid 1960s, Peter Landin observed that a complex programming language can be understood by formulating it as a tiny core calculus capturing the language's essential mechanisms, together with a collection of convenient derived forms whose behavior is understood by translating them into the core

Lambda-Calculus

 The core language used by Landin was the lambda-calculus, a formal system invented in the 1920s by Alonzo Church in which all computation is reduced to the basic operations of function definition and application

factorial **Example**

- factorial(n) =
 if n = 0 then 1 else n * factorial(n 1)
- The corresponding λ-calculs term is: factorial(n) =

 λn . if n=0 then 1 else n * factorial(n - 1)

- Meaning
 - For each nonnegative number n, instantiating the function with the argument n yields the factorial of n as a result

λ -calculus

- Lambda-calculus embodies function definition and application in the purest possible form
- In the lambda-calculus, everything is a function
 - the arguments accepted by functions are themselves functions, and
 - the result returned by a function is another function

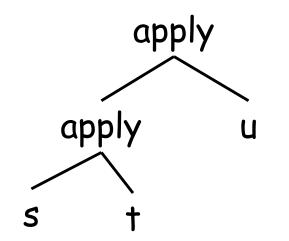
Syntax of λ -calculus

- t ::= x (a variable) | λx.t (a function) | t t (function application)
- The syntax of lambda-calculus comprises three sorts of terms
 - Variable itself is a term
 - The abstraction of a variable x from a term t is a term
 - The application of term t_1 to another term t_2 , is a term

Two conventions of writing lambdaterms

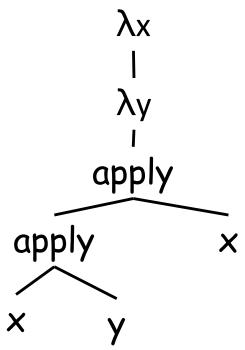
• Application is left associative

- Given s t u, the calculation is (s t) u



Two Conventions

- The body of abstraction is extended to right as much as possible
 - Given λx . λy . x y x, the calculation is λx . (λy . ((x y) x)) λx



Scope

- An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction λx .
- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x
 - In x y, and λy . x y, x is free
 - In λx . x, and λz . λx . λy . x (y z), x is bound

Scope (cont'd)

- A term with no free variable is said to be closed
- Closed terms are also called combinators
- The simplest combinator is called the identity function:
 id = λx. x

Operational Semantics

- $(\lambda x_{.} t_{12})t_{2} \rightarrow (x_{\mapsto}t_{2})t_{12}$
 - Evaluate the term t_{12} by replacing every occurrence of x with t_2
 - What is the reduction result of $(\lambda x. x) y$?
 - What is the evaluation result of the term (λx . x (λx . x))(u r)?
 - All terms of the form $(\lambda x. t_{12})t_2$ is called redex (reducible expression)
 - The operation of rewriting a redex according to the above rule is called beta-reduction

An Example of Reduction

- (λx. x) ((λx. x)(λz. (λx. x) z))
- -> (λx. x)(λz. (λx. x) z) -> λz. (λx. x) z -> λz. z

Programming in the Lambda-Calculus

- Multiple arguments
 - Lambda-calculus provides no built-in support for multi-argument functions
 - But we can use higher-order functions to achieve the same effect

Multiple Arguments

- Suppose
 - s is a term involving two free variables x
 and y
 - We want to write a function f, such that for each pair of arguments (v, w), f yields the result of substituting v for x, and w for
 - Y

- Applying f to (v, w): f v w

Multiple Arguments

• The transformation of multi-argument functions into higher-order functions is called *currying*