
FP Foundations, Scheme

In Text: Chapter 15

Outline

• Mathematical foundations
• Functional programming
• λ-calculus
• LISP
• Scheme

2N. Meng, S. Arthur

Imperative Languages
• We have been discussing imperative

languages
– C/C++, Java, and Pascal are imperative languages
– They follow the von Neumman architecture [1]

3

Functional Programming

• A different way of looking at things
– It is based on mathematical functions
– It is supported by functional and

applicative programming languages
• LISP, ML, Haskell

4N. Meng, S. Arthur

Mathematical Foundations

• A mathematical function is a mapping of
members from one set to another set
– The “input” set is called the domain
– The “output” set is called the range

5N. Meng, S. Arthur

Mathematical Foundations

• The evaluation order of mapping
expressions is controlled by recursion
and conditional expressions, rather than
by the sequencing and iterative
repetition

• Functions do not have states
– They have no side effects
– They always produce the same output given

the same input parameters

6N. Meng, S. Arthur

Simple Functions

• Usual form:
function name + a list of parameters in
parentheses + mapping expression

• E.g., cube(x) = x * x * x, where
– both the domain and range sets are real

numbers, and
– x can represent any member of the domain set,

but it is fixed to represent one specific
element during the expression evaluation

7N. Meng, S. Arthur

Function Application

• It is specified by paring the function
name with a particular element of the
domain set

• The range element is obtained by
evaluating the function-mapping
expression with the domain element
substituted for the particular element
– Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

8N. Meng, S. Arthur

Functional Forms

• A higher-order function, or functional
form, is one that either takes functions
as parameters, or yields a function as
its result, or both

• Two common functional forms
– Function composition
– Apply-to-all

9N. Meng, S. Arthur

Function Composition

• Function composition has two functional
parameters and yields a function whose
value is the first function applied to the
result of the second

• It is written as an expression, using a o
operator (called “circle” or “round”)
– E.g., h = f o g

if f(x) = x + 2, and
g(x) = 3 * x

then h(x) = f(g(x)) = (3 * x) + 2
10N. Meng, S. Arthur

Apply-to-all

• Apply-to-all takes a single function as a
parameter

• If applied to a list of arguments, apply-to-
all applies its functional parameter to each
element of the list, and then collects
results in a list or sequence

• It is denoted by α
– E.g., h(x) = x * x, then

α(h, (2, 3, 4)) = (4, 9, 16)

11N. Meng, S. Arthur

Lambda expression

• Early theoretical work on functions
separated the task of defining a function
from that of naming the function

• Lambda notation, λ, provides a method
for defining nameless functions

• A lambda expression is a function, which
specifies the parameters, and the
mapping expression
– E.g., λ(x)x * x * x

12N. Meng, S. Arthur

Lambda-Calculus

• In the mid 1960s, Peter Landin
observed that a complex programming
language can be understood by
formulating it as a tiny core calculus
capturing the language’s essential
mechanisms, together with a collection
of convenient derived forms whose
behavior is understood by translating
them into the core

N. Meng, S. Arthur 13

Lambda-Calculus

• The core language used by Landin was
the lambda-calculus, a formal system
invented in the 1920s by Alonzo Church
in which all computation is reduced to
the basic operations of function
definition and application

N. Meng, S. Arthur 14

factorial Example

• factorial(n) =
if n = 0 then 1 else n * factorial(n - 1)

• The corresponding λ-calculs term is:
factorial(n) =
λn. if n=0 then 1 else n * factorial(n - 1)

• Meaning
– For each nonnegative number n, instantiating

the function with the argument n yields the
factorial of n as a result

N. Meng, S. Arthur 15

λ-calculus

• Lambda-calculus embodies function
definition and application in the purest
possible form

• In the lambda-calculus, everything is a
function
– the arguments accepted by functions are

themselves functions, and
– the result returned by a function is

another function
N. Meng, S. Arthur 16

Syntax of λ-calculus

t ::= x (a variable)
| λx.t (a function)
| t t (function application)

• The syntax of lambda-calculus comprises
three sorts of terms
– Variable itself is a term
– The abstraction of a variable x from a term t

is a term
– The application of term t1 to another term t2,

is a term

N. Meng, S. Arthur 17

Two conventions of writing lambda-
terms

• Application is left associative
– Given s t u, the calculation is (s t) u

N. Meng, S. Arthur 18

apply

apply

s t

u

Two Conventions

• The body of abstraction is extended to
right as much as possible
– Given λx. λy. x y x, the calculation is λx.
(λy. ((x y) x))

N. Meng, S. Arthur 19

λx

λy

x y

apply x

apply

Scope

• An occurrence of the variable x is said
to be bound when it occurs in the body t
of an abstraction λx. t

• An occurrence of x is free if it appears
in a position where it is not bound by an
enclosing abstraction on x
– In x y, and λy. x y, x is free
– In λx. x, and λz. λx. λy. x (y z), x is bound

N. Meng, S. Arthur 20

Scope (cont’d)

• A term with no free variable is said to
be closed

• Closed terms are also called
combinators

• The simplest combinator is called the
identity function:
id = λx. x

N. Meng, S. Arthur 21

Operational Semantics

• (λx. t12)t2 -> (x t2)t12
– Evaluate the term t12 by replacing every

occurrence of x with t2

– What is the reduction result of (λx. x) y ?
– What is the evaluation result of the term (λx.

x (λx. x))(u r) ?
– All terms of the form (λx. t12)t2 is called redex

(reducible expression)
– The operation of rewriting a redex according

to the above rule is called beta-reduction

N. Meng, S. Arthur 22

An Example of Reduction

• (λx. x) ((λx. x)(λz. (λx. x) z))

N. Meng, S. Arthur 23

-> (λx. x)(λz. (λx. x) z)
-> λz. (λx. x) z
-> λz. z

Programming in the Lambda-Calculus

• Multiple arguments
– Lambda-calculus provides no built-in

support for multi-argument functions
– But we can use higher-order functions to

achieve the same effect

N. Meng, S. Arthur 24

Multiple Arguments

• Suppose
– s is a term involving two free variables x

and y
–We want to write a function f, such that

for each pair of arguments (v, w), f yields
the result of substituting v for x, and w for
y

– f = λx. λy. s
– Applying f to (v, w): f v w

N. Meng, S. Arthur 25

Multiple Arguments

• The transformation of multi-argument
functions into higher-order functions is
called currying

N. Meng, S. Arthur 26

