FP Foundations, Scheme

In Text: Chapter 15

Outline

- Mathematical foundations
- Functional programming
- λ-calculus
- LISP
- Scheme

Imperative Languages

- We have been discussing imperative languages
- C/C++, Java, and Pascal are imperative languages
- They follow the von Neumman architecture [1]

Functional Programming

- A different way of looking at things
- It is based on mathematical functions
- It is supported by functional and applicative programming languages
- LISP, ML, Haskell

Mathematical Foundations

- A mathematical function is a mapping of members from one set to another set
- The "input" set is called the domain
- The "output" set is called the range

Mathematical Foundations

- The evaluation order of mapping expressions is controlled by recursion and conditional expressions, rather than by the sequencing and iterative repetition
- Functions do not have states
- They have no side effects
- They always produce the same output given the same input parameters

Simple Functions

- Usual form:
function name + a list of parameters in parentheses + mapping expression
- E.g., cube $(x)=x^{*} x^{*} x$, where
- both the domain and range sets are real numbers, and
$-x$ can represent any member of the domain set, but it is fixed to represent one specific element during the expression evaluation

Function Application

- It is specified by paring the function name with a particular element of the domain set
- The range element is obtained by evaluating the function-mapping expression with the domain element substituted for the particular element
-Cube(2.0) $=2.0$ * 2.0 * $2.0=8.0$

Functional Forms

- A higher-order function, or functional form, is one that either takes functions as parameters, or yields a function as its result, or both
- Two common functional forms
- Function composition
- Apply-to-all

Function Composition

- Function composition has two functional parameters and yields a function whose value is the first function applied to the result of the second
- It is written as an expression, using a ${ }^{\circ}$ operator (called "circle" or "round")
-E. $g ., h=f^{\circ} g$

$$
\begin{aligned}
& \text { if } f(x)=x+2 \text {, and } \\
& g(x)=3 * x \\
& \text { then } h(x)=f(g(x))=\left(3^{*} x\right)+2
\end{aligned}
$$

Apply-to-all

- Apply-to-all takes a single function as a parameter
- If applied to a list of arguments, apply-toall applies its functional parameter to each element of the list, and then collects results in a list or sequence
- It is denoted by α
- E.g., $h(x)=x^{*} x$, then $\alpha(h,(2,3,4))=(4,9,16)$

Lambda expression

- Early theoretical work on functions separated the task of defining a function from that of naming the function
- Lambda notation, λ, provides a method for defining nameless functions
- A lambda expression is a function, which specifies the parameters, and the mapping expression
-E.g., $\lambda(x) x^{*} x^{*} x$

Lambda-Calculus

- In the mid 1960s, Peter Landin observed that a complex programming language can be understood by formulating it as a tiny core calculus capturing the language's essential mechanisms, together with a collection of convenient derived forms whose behavior is understood by translating them into the core

Lambda-Calculus

- The core language used by Landin was the lambda-calculus, a formal system invented in the 1920s by Alonzo Church in which all computation is reduced to the basic operations of function definition and application

factorial Example

- factorial $(n)=$

$$
\text { if } n=0 \text { then } 1 \text { else } n \text { * factorial }(n-1)
$$

- The corresponding λ-calculs term is: factorial(n) =
λn. if $n=0$ then 1 else n * factorial $(n-1)$
- Meaning
- For each nonnegative number n, instantiating the function with the argument n yields the factorial of n as a result

λ-calculus

- Lambda-calculus embodies function definition and application in the purest possible form
- In the lambda-calculus, everything is a function
- the arguments accepted by functions are themselves functions, and
- the result returned by a function is another function

Syntax of λ-calculus

$\dagger::=x \quad$ (a variable)
$\mid \lambda x . t \quad$ (a function)
$\mid \dagger \dagger \quad$ (function application)

- The syntax of lambda-calculus comprises three sorts of terms
- Variable itself is a term
- The abstraction of a variable \times from a term \dagger is a term
- The application of term t_{1} to another term t_{2}, is a term

Two conventions of writing lambdaterms

- Application is left associative
- Given $s \dagger u$, the calculation is $(s t) u$

Two Conventions

- The body of abstraction is extended to right as much as possible
-Given $\lambda x . \lambda y$. $x y x$, the calculation is λx. (λy. $((x y) x)$)

Scope

- An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction λx. \dagger
- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x
- In $x y$, and $\lambda y . x y, x$ is free
- In $\lambda x . x$, and λz. $\lambda x . \lambda y . x(y z), x$ is bound

Scope (cont'd)

- A term with no free variable is said to be closed
- Closed terms are also called combinators
- The simplest combinator is called the identity function:
$\mathrm{id}=\lambda x . x$

Operational Semantics

- $\left(\lambda x . \dagger_{12}\right) t_{2} \rightarrow\left(x \mapsto \dagger_{2}\right) t_{12}$
- Evaluate the term t_{12} by replacing every occurrence of x with t_{2}
- What is the reduction result of $(\lambda x . x) y$?
- What is the evaluation result of the term (λx. $x(\lambda x . x))(u r)$?
- All terms of the form $\left(\lambda x . t_{12}\right) t_{2}$ is called redex (reducible expression)
- The operation of rewriting a redex according to the above rule is called beta-reduction

An Example of Reduction

- $(\lambda x . x)((\lambda x . x)(\lambda z .(\lambda x . x) z))$
$\rightarrow(\lambda x . x)(\lambda z .(\lambda x . x) z)$
$\rightarrow \lambda z .(\lambda x . x) z$
-> $\lambda z . z$

Programming in the Lambda-Calculus

- Multiple arguments
- Lambda-calculus provides no built-in support for multi-argument functions
- But we can use higher-order functions to achieve the same effect

Multiple Arguments

- Suppose
$-s$ is a term involving two free variables x and y
- We want to write a function f, such that for each pair of arguments (v, w), f yields the result of substituting v for x, and w for
y
$-f=\lambda x . \lambda y . s$
- Applying f to $(v, w): f \vee w$

Multiple Arguments

- The transformation of multi-argument functions into higher-order functions is called currying

