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Imperative Languages
• We have been discussing imperative 

languages
– C/C++, Java, and Pascal are imperative languages
– They follow the von Neumman architecture [1]
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Functional Programming

• A different way of looking at things
– It is based on mathematical functions
– It is supported by functional and 

applicative programming languages
• LISP, ML, Haskell
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Mathematical Foundations

• A mathematical function is a mapping of 
members from one set to another set
– The “input” set is called the domain
– The “output” set is called the range
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Mathematical Foundations

• The evaluation order of mapping 
expressions is controlled by recursion 
and conditional expressions, rather than 
by the sequencing and iterative 
repetition 

• Functions do not have states
– They have no side effects
– They always produce the same output given 

the same input parameters
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Simple Functions

• Usual form: 
function name + a list of parameters in 
parentheses + mapping expression

• E.g., cube(x) = x * x * x, where
– both the domain and range sets are real 

numbers, and
– x can represent any member of the domain set, 

but it is fixed to represent one specific 
element during the expression evaluation
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Function Application

• It is specified by paring the function 
name with a particular element of the 
domain set

• The range element is obtained by 
evaluating the function-mapping 
expression with the domain element 
substituted for the particular element
– Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0
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Functional Forms

• A higher-order function, or functional 
form, is one that either takes functions 
as parameters, or yields a function as 
its result, or both

• Two common functional forms
– Function composition
– Apply-to-all
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Function Composition

• Function composition has two functional 
parameters and yields a function whose 
value is the first function applied to the 
result of the second

• It is written as an expression, using a o
operator (called “circle” or “round”)
– E.g., h = f o g

if f(x) = x + 2, and 
g(x) = 3 * x

then h(x) = f(g(x)) = (3 * x) + 2
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Apply-to-all

• Apply-to-all takes a single function as a 
parameter

• If applied to a list of arguments, apply-to-
all applies its functional parameter to each 
element of the list, and then collects 
results in a list or sequence

• It is denoted by α
– E.g., h(x) = x * x, then

α(h, (2, 3, 4)) = (4, 9, 16)
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Lambda expression 

• Early theoretical work on functions 
separated the task of defining a function 
from that of naming the function

• Lambda notation, λ, provides a method 
for defining nameless functions

• A lambda expression is a function, which  
specifies the parameters, and the 
mapping expression 
– E.g., λ(x)x * x * x
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Lambda-Calculus

• In the mid 1960s, Peter Landin
observed that a complex programming 
language can be understood by 
formulating it as a tiny core calculus 
capturing the language’s essential 
mechanisms, together with a collection 
of convenient derived forms whose 
behavior is understood by translating 
them into the core
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Lambda-Calculus

• The core language used by Landin was 
the lambda-calculus, a formal system 
invented in the 1920s by Alonzo Church 
in which all computation is reduced to 
the basic operations of function 
definition and application
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factorial Example

• factorial(n) = 
if n = 0 then 1 else n * factorial(n - 1)

• The corresponding λ-calculs term is:
factorial(n) = 
λn. if n=0 then 1 else n *  factorial(n - 1)

• Meaning
– For each nonnegative number n, instantiating 

the function with the argument n yields the 
factorial of n as a result
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λ-calculus

• Lambda-calculus embodies function 
definition and application in the purest 
possible form

• In the lambda-calculus, everything is a 
function
– the arguments accepted by functions are 

themselves functions, and 
– the result returned by a function is 

another function
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Syntax of λ-calculus

t ::= x (a variable) 
| λx.t (a function) 
| t t (function application)

• The syntax of lambda-calculus comprises 
three sorts of terms
– Variable itself is a term
– The abstraction of a variable x from a term t 

is a term
– The application of term t1 to another term t2, 

is a term
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Two conventions of writing lambda-
terms

• Application is left associative
– Given s t u, the calculation is (s t) u
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Two Conventions

• The body of abstraction is extended to 
right as much as possible
– Given λx. λy. x y x, the calculation is λx.
(λy. ((x y) x))
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Scope

• An occurrence of the variable x is said 
to be bound when it occurs in the body t 
of an abstraction λx. t

• An occurrence of x is free if it appears 
in a position where it is not bound by an 
enclosing abstraction on x
– In x y, and λy. x y, x is free 
– In λx. x, and λz. λx. λy. x (y z), x is bound

N. Meng, S. Arthur 20



Scope (cont’d)

• A term with no free variable is said to 
be closed

• Closed terms are also called 
combinators

• The simplest combinator is called the 
identity function:
id = λx. x
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Operational Semantics

• (λx. t12)t2 -> (x   t2)t12
– Evaluate the term t12 by replacing every 

occurrence of x with t2

– What is the reduction result of (λx. x) y ? 
– What is the evaluation result of the term (λx. 

x (λx. x))(u r) ?
– All terms of the form (λx. t12)t2 is called redex

(reducible expression)
– The operation of rewriting a redex according 

to the above rule is called beta-reduction

N. Meng, S. Arthur 22



An Example of Reduction

• (λx. x) ((λx. x)(λz. (λx. x) z)) 
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-> (λx. x)(λz. (λx. x) z)
-> λz. (λx. x) z
-> λz. z



Programming in the Lambda-Calculus

• Multiple arguments
– Lambda-calculus provides no built-in 

support for multi-argument functions
– But we can use higher-order functions to 

achieve the same effect
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Multiple Arguments

• Suppose 
– s is a term involving two free variables x

and y
–We want to write a function f, such that 

for each pair of arguments (v, w), f yields 
the result of substituting v for x, and w for 
y

– f = λx. λy. s
– Applying f to (v, w): f v w
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Multiple Arguments

• The transformation of multi-argument 
functions into higher-order functions is 
called currying
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