Lexical and Syntax Analysis (2)

In Text: Chapter 4



Motivating Example

* Consider the grammar
S -> cAd
A->ab|a

* Input string: cad
« How to build a parse tree top-down?



Recursive-Descent Parsing

* Initially create a tree containing a
single node S (the start symbol)

» Apply the S-rule to see whether
the first token matches

S
—If matches, expand the tree oy
* Apply the A-rule to the leftmost
nonterminal A S
— Since the first token matches both C/A\
alternatives (Al and A2), randomly pick one /N

(e.g., Al) to apply



Recursive-Descent Parsing .

Pl

C JA. d
— Since the third token d does not match b, report

failure and go back to A to try another

) 4

alternative
— Rollback to the state before applying Al rule, S
and then apply the alternative rule — T
— The third token matches, so parsing is ¢ ’i\ d
successfully done a



Recursive-Descent Parsing Algorithm

Suppose we have a scanner which generates the next token as needed.
Given a string, the parsing process starts with the start symbol rule:
1. if there is only one RHS then

2. for each terminal in the RHS

3 compare it with the next input token

4 if they match, then continue

5 else report an error

6. for each nonterminal in the RHS

7 call its corresponding subprogram and try match

8. else // there is more than one RHS

9. choose the RHS based on the next input token (the lookahead)
10. for each chosen RHS

11.  try match with 2-7 mentioned above

12. if no match is found, then report an error



Recursive-Descent Parsing

* There is a subprogram for each
nonterminal in the grammar, which can
parse sentences that can be generated
by that nonterminal

» EBNF is ideally suited for being the
basis for a recursive-descent parser,
because EBNF minimizes the number of
nonterminals



* A grammar for simple expressions:

<expr> — <term> {(+ | —-) <term>}
<term> — <factor> {(* | /) <factor>}

<factor> — 1d | 1int constant | ( <expr> )



An Example

/* Function expr parses strings in the language
generated by the rule: <expr> — <term> {(+ | -) <term>} */

void expr() {
printf (“Enter <expr>\n");
/* Parse the first term */

term();

/* As long as the next token is + or -, call lex to get the
next token and parse the next term */

while (nextToken == ADD OP ||
nextToken == SUB_OP) {
lex();
term();

}

printf (“Exit <expr>\n");

} 5



» This particular routine does not detect
errors

 Convention: Every parsing routine leaves
the next token in nextToken



An Example (cont'd)

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>) */
void term() {
printf (“Enter <term>\n");
/* Parse the first factor */
factor();

/* As long as the next token is * or /,
next token and parse the next factor */
while (nextToken == MULT OP || nextToken == DIV_OP) {
lex();
factor();

}
printf (“Exit <term>\n");
} /* End of function term */
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/* Function factor parses strings in the language
generated by the rule: <factor> -> id | int_ constant |

(<expr>) */

void factor() {
printf (“Enter <factor>\n");

/* Determine which RHS */

if (nextToken) == ID CODE || nextToken == INT CODE)
/* For the RHS id, just call lex */
lex();

/* If the RHS is (<expr>) — call lex to pass over the
left parenthesis, call expr, and check for the right
parenthesis */
else if (nextToken == LP_CODE) ({

lex();
expr();
if (nextToken == RP_CODE)
lex();
else
error();
} /* End of else if (nextToken == ... */
else error(); /* Neither RHS matches */

printf (“Exit <factor>\n");
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#define
#define
#define
#define
#define
#define
#define
#define
#define

Token codes

INT LIT 10
IDENT 11
ASSIGN OP 20
ADD OP 21
SUB_OP 22

MULT OP 23

DIV _OP 24

LEFT PAREN 25
RIGHT PAREN 26
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Recursive-Descent Parsing
(continued)

pp. 176-179
Trace of the lexical and syntax analyzers on (sum+47)/total

Next token is: 25 Next lexeme is (
Enter <expr>

Enter <term>

Enter <factor>

Next token 1s: 11 Next lexeme 1s sum
Enter <expr>

Enter <term>

Enter <factor>

Next token is: 21 Next lexeme is +
Exit <factor>

Next token i1s: -1 Next lexeme i1s EOF



Key points about recursive-descent
parsing

» Recursive-descent parsing may require
backtracking

« LL(1) does not allow backtracking

— By only looking at the next input token, we
can always precisely decide which rule to

apply
* By carefully designing a grammar, i.e.,
LL(1) grammar, we can avoid backtracking



Two Obstacles to LL(1)-ness

« Left recursion

— E.g., id_list -> id_list_prefix ;
id_list_prefix -> id_list_prefix, id | id

— When the next token is id, which rule
should we apply?

« Common prefixes
—~Eg,A->ab|a

— When the next token is a, which rule should
we apply?



Common prefixes

 Unable to decide which RHS should use
by simply checking one token of lookahead

* Pairwise Disjointness Test

— For each nonterminal A with more than one
RHS, for each pair of rules, the possible
first characters of the strings (FIRST set)
should be disjoint

« If A -> a4]|a,, then FIRST(o;) N FIRST(a,) = ¢



LL(1) Grammar

« Grammar which can be processed with
LL(1) parser

* Non-LL grammar can be converted to
LL(1) grammar via:
— Left-recursion elimination

— Left factoring by extracting common
prefixes



Left-Recursion Elimination

* Replace left-recursion with right-
recursion

id_list -> id_list_prefix ;
id_list_prefix -> id_list_prefix, id | id
=>

id_list -> id id_list_tail

id_list_tail ->; | , id id_list_tail



Left Factoring

 Extract the common prefixes, and
introduce new nonterminals as heeded

A->ab | a
=>

A ->aB

B->b|c¢



Non-LL Languages

« Simply eliminating left recursion and
common prefixes does not garantee to
make LL(1)

* An example in Pascal:
stmt -> if condition then_clause else_clause
| other_stmt
then_clause -> then stmt
else_clause -> else stmt | ¢

* How to parse "if C1 then if C2 then S1 else S2" ?




Non-LL Languages

* Define "disambiguating rule”, use it
together with ambiguous grammar to
parse top-down

—E.g., in the case of a conflict between two
possible productions, the one to use is the
one that occurs first, textually in the

grammar
— to pair the else with the nearest then

 "Disambiguating rule” can be also
defined for bottom-up parsing



Table-Driven Parsing

It is possible to build a non-recursive
predictive parser by maintaining a stack
explicitly, rather than implicitly via
recursive calls

» The non-recursive parser looks up the

production to be applied in a parsing
table.

» The table can be constructed directly
from LL(1) grammars



INPUT al| +|b|S$

Table-Driven

Predictive Parsing
Program

Parsing s«

o (N =<| X

An input buffer

Parsing Table M

— Contains the input s’rrmg

» OUTPUT

— The string can be followed by $, an end marker to

indicate the end of the string
A stack

— Contains symbols with $ on the bottom, with the

start symbol initially on the top

A parsing table (2-dimensional array M[A, a])
An output stream (production rules applied for

derivation)



Input: a string w, a parsing table M for grammar G
Output: if wis in L(G), a leftmost derivation of w; otherwise, an error
indication
Method:
set ip to point to the first symbol of w$
repeat
let X be the top stack symbol and a the symbol pointed to by ip;
if X is a terminal or $, then
if X =athen
pop X from the stack and advance ip
else error()
else /* X is a non-terminal */
if M[X, a] = X->Y,Y,..Y,, then
pop X from the stack
push Y,, .., Y,, Y; onto the stack
output the production X->Y,Y,..Y,
end
else error()

until X = $



An Example

* Input String: id +id * id
* Input parsing table for the following

gr'ammar'

E->TFE /&ﬂﬁ&( INPUT SYMBOL ( ) :
TER\/II\AL id + *

E -> "'TE | E ——  |E_TF E—TF

T->FT 2%
T>*FT |e * |T77 o
T T 53¢ |T —«FT'| ¢ T 5e|T = ¢
F->(E)|id
F

F—id F - (E)
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I
INPUT SYMBOL

ﬁ% id + * ( ) $
LL PC(r'Sing E E—TE | | E—TE
E' - +TE E' —selE —e¢
T T - FT' T - FT'
T T3¢ (T -+FT'| ¢ T we|T —e
F F—id F - (E)
Stack Input Output
$E id+id*id$| E-> TE
$E'T id +id*id$| T->FT

$E'TF id + id * id$| F ->id
$E'Tid id + id * id$
$E'T +id * id$

$ $| E ->¢
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