Lexical and Syntax Analysis

In Text: Chapter 4

Lexical and Syntactic Analysis

« Two steps to discover the syntactic
structure of a program

— Lexical analysis (Scanner): to read the input
characters and output a sequence of tokens

— Syntactic analysis (Parser): to read the
tokens and output a parse tree and report
syntax errors if any

Interaction between lexical analysis
and syntactic analysis

Source token

Program Lexical 1 Syniex
Analysis — Analysis

get next
taken from

lexical analyzer

> Parse tree

Symboi
Table

-l

Reasons to Separate Lexical and
Syntactic Analysis

» Simplicity - less complex approaches can
be used for lexical analysis; separating
them simplifies the parser

 Efficiency - separation allows
optimization of the lexical analyzer

* Portability - parts of the lexical
analyzer may not be portable, but the

parser is always portable

Scanner

 Pattern matcher for character strings

— If a character sequence matches a pattern,
it is identified as a token

* Responsibilities
— Tokenize source, report lexical errors if
any, remove comments and whitespace, save
text of interesting tokens, save source

locations, (optional) expand macros and
implement preprocessor functions

Tokenizing Source

* Given a program, identify all lexemes and
their categories (tokens)

Lexeme, Token, & Pattern

e Lexeme

— A sequence of characters in the source
program with the lowest level of syntactic
meanings

« E.g., sum, +, -

« Token
— A category of lexemes
— A lexeme is an instance of token
— The basic building blocks of programs

Token Examples

Token Informal Description Sample
Lexemes
keyword All keywords defined in the if else
language
comparison <, > <=, >z, == Iz <=, Iz
id One letter followed by letters | pi, score, D2
and digits
humber Any numeric constant 3.14159, 0, 6
literal Anything surrounded by “'s, but | "core dumped”
exclude "

Lexeme, Token, & Pattern (cont'd)

e Pattern

— A description of the form that the lexemes
of a foken may take

— Specified with regular expressions

Motivating Example

« Token set:
— assign -> =
— plus -> +
— minus -> -
— times > *
—div->/
— Iparen -> (
— rparen ->)
—id -> letter(letter|digit)*
— number -> digit digit*|digit*(.digit|digit.)digit*

Motivating Example

« What are the lexemes in the string
“vari=b*3" ?

* What are the corresponding tokens ?

* How do you identify the tokens?

Lexical Analysis

* Three approaches to build a lexical
analyzer:

— Write a formal description of the tokens and
use a software tool that constructs a table-
driven lexical analyzer from such a description

— Design a state diagram that describes the
tokens and write a program that implements
the state diagram

— Design a state diagram that describes the
tokens and hand-construct a table-driven
implementation of the state diagram

State Diagram Design

* A ndive state diagram would have a
transition from every state on every
character in the source language - such

a diagram would be very largel

Lexical Analysis (continued)

* In many cases, transitions can be
combined to simplify the state diagram

— When recognizing an identifier, all

uppercase and lowercase letters are

equivalent
e Use a character class that includes al

— When recognizing an integer litera
digits are equivalent - use a digit ¢

letters

. all
ass

Lexical Analysis (continued)

 Reserved words and identifiers can be
recognized together (rather than having
a part of the diagram for each reserved
word)

— Use a table lookup to determine whether a
possible identifier is in fact a reserved
word

State Diagram

letter | digit

return lookup(lexeme)

return Int_Lit

Lexical Analysis (continued)

 Convenient utility subprograms:

— getChar - gets the next character of
input, puts it in nextChar, determines its
class and puts the class in charClass

— addChar - puts the character from
nextChar into the place the lexeme is being
accumulated

— lookup - determines whether the string in
lexeme is a reserved word (returns a code)

Implementation Pseudo-code

static
static
static
static

int le

switch (charClass) {

ca

char lexeme[100];

char nextChar;

TOKEN nextToken;

CHAR CLASS charClass;

x() {

se LETTER:

// add nextChar to lexeme

addChar () ;

// get the next character and determine its class

getChar () ;

while (charClass

{

addChar () ;
getChar () ;

}

nextToken
break;

ID;

LETTER

charClass

DIGIT)

case DIGIT:
addChar () ;
getChar () ;
while (charClass == DIGIT) {
addChar () ;
getChar () ;

}
nextToken = INT LIT;

break;

case EOF:
nextToken = EOF;
lexeme[0] = ‘E’;
lexeme[l] = ‘0O’ ;
lexeme[2] = ‘F';
lexeme[3] = 0;

}

printf (“Next token is: %d, Next lexeme is %$s\n”,
nextToken, lexeme) ;

return nextToken;
} /* End of function lex */

Lexical Analyzer

Implementation:
- front.c (pp. 166-170)

- Following is the output of the lexical analyzer of
front.c whenusedon (sum + 47) / total

Next token is: 25 Next lexeme is (
Next token is: 11 Next lexeme 1s sum
Next token is: 21 Next lexeme is +
Next token is: 10 Next lexeme 1is 47
Next token is: 26 Next lexeme 1s)
Next token is: 24 Next lexeme is /
Next token 1is: 11 Next lexeme 1s total
Next token is: -1 Next lexeme is EOF

The Parsing Problem

* Given an input program, the goals of the
parser:

— Find all syntax errors; for each, produce an
appropriate diaghostic message and recover
quickly

— Produce the parse tree, or at least a trace
of the parse tree, for the program

The Parsing Problem (continued)

» The Complexity of Parsing

— Parsers that work for any unambiguous
grammar are complex and inefficient
(O(n3), where n is the length of the input)

— Compilers use parsers that only work for a
subset of all unambiguous grammars, but do
it in linear time (O(n), where n is the
length of the input)

Two Classes of Grammars

* Left-to-right, Leftmost derivation (LL)
 Left-to-right, Rightmost derivation (LR)

« We can build parsers for these
grammars that run in linear time

Grammar Comparison

LL

LR

M4 4 mm

>TE

>+ TE | ¢
->FT
S>*FT | e
-> id

E S>E+T|T
T->T*F|F
F ->id

Two Categories of Parsers

« LL(1) Parsers

— L: scanning the input from left to right
—L: producing a leftmost derivation

— 1. using one input symbol of lookahead at each
step to make parsing action decisions

« LR(1) Parsers

— L: scanning the input from left to right

— R: producing a rightmost derivation in
reverse

— 1. the same as above

Two Categories of Parsers

« LL(1) parsers (predicative parsers)

— Top down
* Build the parse tree from the root
* Find a leftmost derivation for an input string

* LR(1) parsers (shift-reduce parsers)

— Bottom up
* Build the parse tree from leaves

* Reducing a string to the start symbol of a
grammar

Top-down Parsers

« Given a sentential form, xAa , the
parser must choose the correct A-rule
to get the next sentential form in the
leftmost derivation, using only the first
token produced by A

* The most common top-down parsing
algorithms:
— Recursive descent - a coded implementation
— LL parsers - table driven implementation

Bottom-up parsers

» Given a right sentential form, a,
determine what substring of a is the
right-hand side of the rule in the
grammar that must be reduced to
produce the previous sentential form in
the right derivation

* The most common bottom-up parsing
algorithms are in the LR family

