
Name, Scope and Binding (2)

In Text: Chapter 5

Variable Attributes (continued)

• Storage Bindings
– Allocation
• Getting a memory cell from a pool of available

memory to bind to a variable
– Deallocation
• Putting a memory cell that has been unbound from

a variable back into the pool

• Lifetime
– The lifetime of a variable is the time during

which it is bound to a particular memory cell
N. Meng, S. Arthur 2

Lifetime (Cont’d)

• If an object’s memory binding outlives
its access binding, we get garbage

• If an object’s access binding outlives its
memory binding, we get a dangling
reference

N. Meng, S. Arthur 3

Storage Allocation Mechanism

• Static allocation
• Stack-based allocation
• Heap allocation

• Variable lifetime begins at allocation, and
ends at deallocation either by the
program or garbage collector

N. Meng, S. Arthur 4

Static Allocation

• Static memory allocation is the allocation
of memory at compile time before the
associated program is executed

• When the program is loaded into memory,
static variables are stored in the data
segment of the program’s address space

• The lifetime of static variables exists
throughout program execution
– E.g., static int a;

N. Meng, S. Arthur 5

Stack-based Allocation

N. Meng, S. Arthur 6Subroutine
Main

Return address

Miscellaneous
bookkeeping

Parameters

Local variables

Stack-based Allocation

• The location of local variables and
parameters can be defined as negative
offsets relative to the base of the frame
(fp), or positive offsets relative to sp

• The displacement addressing mechanism
allows such addition to be specified
implicitly as part of an ordinary load or
store instruction

• Variable lifetime exists through the
declared method

N. Meng, S. Arthur 7

Heap-based Allocation

• Heap
– A region of storage in which subblocks can

be allocated and deallocated at arbitrary
time

• Heap space management
– Different strategies achieve different

trade-offs between speed and space

N. Meng, S. Arthur 8

Garbage Collection Algorithms

• Reference Counting
– Keep a count of how many times you are

referencing a resource (e.g., an object in
memory), and reclaim the space when the
count is zero

– It cannot handle cyclic structures
– It causes very high overhead to maintain

counters

N. Meng, S. Arthur 9

• Mark-Sweep
– Periodically marks all live objects

transitively, and sweeps over all memory
and disposes of garbage

– Entire heap has to be iterated over
–Many long-lived objects are iterated over

and over again, which is time-consuming

N. Meng, S. Arthur 10

• Mark-Compact
–Mark live objects, and move all live objects

into free space to make live space compact
– It takes even longer time than mark-sweep

due to object movement

N. Meng, S. Arthur 11

• Copying
– It uses two memory spaces, and each time

only uses one space to allocate memory,
when the space is used up, copy all live
objects to the other space

– Each time only half space is used

N. Meng, S. Arthur 12

• Generational Garbage Collection
– Studies show that
• most objects live for very short time
• the older an object is, the more likely it is to

live quite long

• Concentrate on collections of young
objects, and move surviving objects to
older generations, which are collected
less frequently

N. Meng, S. Arthur 13

Space Concern

• Fragmentation
– The phenomenon in which storage space is

used inefficiently
– E.g., although in total 6K memory is available,

there is not a 4K contiguous block available,
which can cause allocation to fail

N. Meng, S. Arthur 14

Space Concern
• Internal fragmentation
– Allocates a block that is larger than required

to hold a given object
– E.g., Since memory can be provided in chunks

divisible by 4, 8, or 16, when a program
requests 23 bytes, it will actually gets 32
bytes

• External fragmentation
– Free memory is separated into small blocks,

and the ability to meet allocation requests
degrades over timeN. Meng, S. Arthur 15

Scope

• The scope of a variable is the range of
statements over which its declaration is
visible

• A variable is visible in a statement if it
can be referenced in that statement

• The nonlocal variables of a program unit
or block are those that are visible but
not declared in the unit

• Global versus nonlocal

N. Meng, S. Arthur 16

Scope (continued)

• The scope rules of a language determine
how a particular occurrence of a name is
associated with a variable

• They determine how references to
variables declared outside the currently
executing subprogram or block are
associated with their declarations

• Two types of scope
– Static/lexical scope
– Dynamic scope

N. Meng, S. Arthur 17

Global Scope
• C, C++, PHP, and Python support a file to

consist of function definitions
– These languages allow variable declarations to

appear outside function definitions
• C and C++ have both declarations (just

attributes) and definitions (attributes and
storage) of global data
– A declaration outside a function definition

specifies that it is defined in another file
– E.g., extern int var;

N. Meng, S. Arthur 18

Global Scope (continued)
• PHP
– The scope of a variable (implicitly) declared in

a function is local to the function
– The scope of a variable implicitly declared

outside functions is from the declaration to
the end of the program, but skips over any
intervening functions
• Global variables can be accessed in a function

through the $GLOBALS array or by declaring it global

N. Meng, S. Arthur 19

Global Scope (continued)

• Python
– A global variable can be referenced in

functions, but can be assigned in a function
only if it has been declared to be global in
the function

N. Meng, S. Arthur 20

Static Scope

• The scope of a variable can be statically
determined, that is, prior to execution

• Two categories of static-scoped
languages
– Languages allowing nested subprograms:

Ada, JavaScript, and PHP
– Languages which does not allow

subprograms: C, C++, Java

N. Meng, S. Arthur 21

Static Scope

• To connect a name reference to a
variable, you must find the appropriate
declaration

• Search process
1. search the declaration locally
2. If not found, search the next-larger

enclosing unit (static parent or ancestors)
3. Loop over step 2 until a declaration is

found or an undeclared variable error is
detected

N. Meng, S. Arthur 22

Variable Hiding

• Variables can be hidden from a unit by
having a “closer” variable with the same
name
– “Closer” means more immediate enclosing

scope
– C++ and Ada allow access to the “hidden”

variables (using fully qualified names)
• scope.name

• Blocks can be used to create new static
scopes inside subprograms

N. Meng, S. Arthur 23

Declaration Order

• C99, C++, Java, and C# allow variable
declarations to appear anywhere a
statement can appear
– In C99, C++, and Java, the scope of all local

variables is from the declaration to the end
of the block

N. Meng, S. Arthur 24

Declaration Order (continued)

– In C#, the scope of any variable declared
in a block is the whole block, regardless of
the position of the declaration in the block
• However, a variable still must be declared

before it can be used
– In C++, Java, and C#, variables can be

declared in for statements
• The scope of such variables is restricted to the

for construct

N. Meng, S. Arthur 25

An Example (Ada)
1. procedure Big is
2. X : Integer;
3. procedure Sub1 is
4. X: Integer;
5. begin -- of Sub1
6. …
7. end; -- of Sub1
8. procedure Sub2 is
9. begin -- of Sub2
10. … X …
11. end; -- of Sub2
12. begin -- of Big
13. …
14. end; -- of Big

• Which declaration
does X in line 10 refer
to?

N. Meng, S. Arthur 26

Dynamic Scope

• Dynamic scoping is based on the calling
sequence of subprograms, not on their
spatial relationship to each other

• Dynamic scope can be determined only
at runtime

• Always used in interpreted languages,
which does not have type checking at
compile time

N. Meng, S. Arthur 27

An Example (Common Lisp) [1]

(defvar x 3) ; declare dynamic scoping with “defvar”
(defun foo () x)
(let ((x 4)) (foo)) ; returns 4

(setq x 3) ; declare lexical scoping with “setq”
(defun foo () x)
(let ((x 4)) (foo)) ; returns 3

When foo goes to find the value of x,
• it initially finds the lexical value defined at

the top level (“setq x 3” or “defvar x 3”)
• it checks if the variable is dynamic
– If it is, then foo looks to the calling environment,

and uses 4 as x valueN. Meng, S. Arthur 28

Static vs. Dynamic Scoping
Static scoping Dynamic scoping

Advantages 1. Readability
2. Locality of
reasoning
3. Less runtime
overhead

Some extra
convenience
(minimal parameter
passing)

Disadvantages Less flexibility 1. Loss of
readability
2. Unpredictable
behavior
3. More runtime
overheadN. Meng, S. Arthur 29

Another Example
void printheader() {

…
}
void compute() {

int sum;
…
printheader();

}

What is the static scope
of sum?
What is the lifetime of
sum?

N. Meng, S. Arthur 30

Referencing Environments

• Referencing environments of a
statement is the collection of all
variables that are visible in the
statement

N. Meng, S. Arthur 31

Referencing environments in static-
scoped languages

• The variables declared in the local scope
plus the collection of all variables of its
ancestor scopes that are visible,
excluding variables in nonlocal scopes
that are hidden by declarations in
nearer procedures

N. Meng, S. Arthur 32

An Example
1. procedure Example is
2. A, B : Integer;
3. … ß-------------------------1
4. procedure Sub1 is
5. X, Y: Integer;
6. begin -- of Sub1
7. … ß----------------2
8. end; -- of Sub1
9. procedure Sub2 is
10. X: Integer;
11. begin -- of Sub2
12. … ß----------------3
13. end; -- of Sub2
14. begin -- of Example
15. … ß-----------------------4
16. end; -- of Example

With static scoping,
what are the
referencing
environments of the
indicated program
points?
Point RE

1. A and B of Example
2. A and B of Example, X and

Y of Sub1
3.
4.

N. Meng, S. Arthur 33

Referencing environments in
dynamic-scoped languages

• A subprogram is active if its execution
has begun but has not yet terminated

• The referencing environments of a
statement in a dynamically scoped
language is the locally declared
variables, plus the variables of all other
subprograms that are currently active
– Some variables in active previous

subprograms can be hidden by variables
with the same names in recent ones

N. Meng, S. Arthur 34

An Example

What are the
referencing
environments of the
indicated program
points?

1. void sub1() {
2. int a, b;
3. … ß-------------------------1
4. } /* end of sub1 */
5. void sub2() {
6. int b, c;
7. … ß-------------------2
8. sub1();
9. } /* end of sub2 */
10.void main() {
11. int c, d;
12. … ß----------------3
13. sub2();
14.} /* end of main */

N. Meng, S. Arthur 35

The meaning of names within a scope

• Within a scope,
– Two or more names that refer to the same

object at the same program point are called
aliases
• E.g., int a =3; int* p = &a, q = &a;

– A name that can refer to more than one
object at a given point is considered
overloaded
• E.g., print_num(){…}, print_num(int n){…}
• E.g., complex + complex, complex + float

N. Meng, S. Arthur 36

Named Constants

• A named constant is a variable that is
bound to a value only once

• Advantages: readability and
modifiability

• Used to parameterize programs
• The binding of values to named

constants can be either static (called
manifest constants) or dynamic

N. Meng, S. Arthur 37

Named Constants (continued)

• Languages:
– C++ and Java: allow dynamic binding of

values to named variables
• final int result = 2 * width + 1; (Java)

– C# has two kinds, readonly and const
• the values of const named constants are bound

at compile time
• the values of readonly named constants are

dynamically bound

N. Meng, S. Arthur 38

