The Desigh and Implementation
of Programming Languages

Language Implementation Methods

» Compilation
* Interpretation
 Hybrid

Compilation

Source program ——> < Compiler >4’ Target program

Input —>< Target program >—> Output

* Translate high-level programs to
machine code

e Slow translation
 Fast execution

Interpretation

Source program \(

Input

Interpret one statement and then
execute it on a virtual machine

No translation
Slow execution
E.g., Basic

Interpreter) —> Output

Compilation vs. Interpretation

» Compilation
— Better performance
 No runtime cost for interpretation
* Program optimization
* Interpretation

— Better diagnosis (with excellent source-
level debugger)

— Earlier diagnosis (execute erroneous
program)

Hybrid Implementation

Source prograim ——» (Translator)—» Intermediate program

Intermediate program

\

e Virtual machine >—> Output

Input —

* Quick start in "Interpretation” mode

» Compile code on hot paths to speed up

—E.g., Just-in-Time (JIT) compiler in Java
Virtual Machine (JVM)

Hybrid Implementation (Java)

Java program

l

(Java compiler > Input

Java byte code —>(Bytecode interpreter)
(JIT compiler) Output

e ————— ——— — —— — — — — —

Input—»l\/ Machine language)—»Output

Implementation Strategies in
Practice

Preprocessing

Library routines and linking
Post-compilation assembly
Source-to-source ftranslation
Bootstrapping

Preprocessing (Basic)

* An initial translator
— to remove comments and white spaces,

—to group characters together into tokens such as
keywords, identifiers, numbers, and symbols,

— to expand abbreviations in the style of a macro
assembler, and

—to identify higher-level syntactic structures,
such as loops and subroutines

¢ Goal

— To provide an intermediate form that mirrors
the structure of the source, but can be
interpreted more efficiently

Preprocessing (C)

» Conditional compilation

— Delete portions of code to allow several
versions of a program to be built from the
same source

Library routines and linking (Fortran)

» The compilation of source code counts
on the existence of a library of
subroutines invoked by the program

Fortran program —>< Compiler)—» Incomplete machine language

Incomplete machine

language T

< Linker >—> Machine language program

Library routines

Post-compilation assembly (gcc)

* Source code is first compiled to assembly
code, and then the assembler translates it
to machine code

— To facilitate debugging (assembly code is
easier to read)

— To isolate the compiler from changes in the
format of machine language files (only the
commonly shared assembler must be changed)

Source prograi —»(Compiler)—) Assembly language

Assembly lnllgllngc—»(Assembler >—> Machine language

Source-to-Source Translation

« AT&T C++ compiler

— To translate C++ programs to C programs

— To facilitate reuse of compilers or language
support

Source prograiil —>< PI‘(}]H'(->C‘L‘HN)1‘ >—’ Modified source prograii

Modified source program ——» ((‘—l——l— ("()lupil(\l‘> ——>» (' code

C code — (C compiler D—) Assembly language

Bootstrapping

* Many compilers are self-hosting:
— They are written in the language they
compile
— Bootstrapping is used to compile the
compiler in the first place

Pascal->MC Pascal->P-code Pascal->MC
compiler, compiler, compiler,
in Pascal in P-code in P-code

¢

P-code->MC Pascal->MC
interpreter, compiler,
in MC in MC

Pascal

Pascal

MC

Pascal

P-cod

Pascal

P-code|P-codd|P-code

MC

MC| MC

MC

Overview of Compilation

Character stream

YA

Token stream

Parse tree

Abstract syntax tree or

other intermediate form \
MOdlﬁed /

intermediate form \ e
Target language «— _

(e.g., assembler) \
MOdlﬁed /

target language

Scanner (lexical analysis)

/
\
— L
\
L

Parser (syntax analysis)

(" Semantic analysis and
kintermediate code generation

Ne A N F N

4 Machine-independent

\code improvement (optional

Target code generation

N\

4 Machine-specific
\code improvement (optional)j

2%
>Pront
end
o
=|
e
L
=
>~
w
~
>Back
end
% 7 _J

16

Front end & back end

* Front end

— To analyze the source code in order to build
an internal representation (IR) of the

program
— It includes: lexical analysis, syntactic
analysis, and semantic analysis

* Back end

— To gather and analyze program information
from IR, to optimize the code, and to
generate machine code

— It includes: optimization and code generation

Scanning (Lexical Analysis)

* Break the program into "tokens"—the
smallest meaningful units

— This can save time, since character-by-
character processing is slow

« We can tune the scanner better
— E.g., remove spaces & comments

* A scanner uses a Deterministic Finite
Automaton (DFA) to recognize tokens

A running example: Greatest Common

Divisor (GCD)
int main() { Token sequence:
int I = ge‘l'i.n'l'(), iit Iinaln =< ;etim{:
j = getint(); <) .3 =
. - 1 - etint () ; while
while (i 1= j) { . . S
|f(|>J)|:|—J; { if (i >
e|Sej - J - |, 3 ; ,l ;lse ;
) N
. -\, } utint (1)
putint(i); ,. .

}

Parsing

* Organize tokens into a parse tree that
represents higher-level constructs
(statements, expressions, subroutines)
— Each construct is a node in the tree

— Each construct's constituents are its
children

GCD Parsing Tree

translation-unit
|

function-definition

declarator

™

pointer_opt direct-declarator

€

€

(

direct-declarator

ident (main)

declaration-specifiers 3

™

type-specifier declaration-specifiers_opt

int €

—_

declaration-specifiers init-declara

™

type-specifier declaration-specifiers_opt
! |

init-decla

declaration-list_

Z N

identifier-list_opt

block-item-list

compound-statement

/\

{ block-item-list_opt }

opt

block-item-list

\

block-item-list bloc

.

block-item

\

)

1

declaration

\

tor-list_opt

’

rator-list

/'\

Semantic Analysis

» Determine the meaning of a program

A semantic analyzer builds and
maintains a symbol table data structure
that maps each identifier to the
information known about it, such as the

identifier's type, internal structure, and
scope

Semantic Analysis

» With the symbol table, the semantic
analyzer can enforce a large variety of
rules to check for errors

» Sample rules:

— Each identifier is declared before it is
used

— Any function with a non-void return type
returns a value explicitly

— Subroutine calls provide the correct
number and types of arguments

Semantic Analysis

» Static semantics
— Rules that can be checked at compile time

* Dynamic semantics

— Rules that must be checked at run time,
such as

* Variables should never be used in an expression
unless they have been given a value

* Pointers should never be dereferenced unless
they refer to a valid object

Syntax Tree

* A parse tree is known as a concrete
syntax tree

— It demonstrates concretely, how a
particular sequence of tokens can be
derived under the rule of the context-free
grammar

» However, much of the information in a
concrete syntax tree is irrelevant

— E.g., € under some branches

Syntax Tree

* In the process of checking static
semantic rules, a semantic analyzer
transforms the parse tree into an
abstract syntax tree (AST, or syntax
tree) by
— removing "unimportant” nodes, and

— annotating remaining nodes with
information like pointers from identifiers
to their symbol table entries

o @CD Abstract Syntax Tree

‘ 6) call call
(3) | /\
® . @ (5
/\ /R
(5) (6) > = o
Index Symbol Type /\ /\ /\
VL type ® © B - e -

int type

getint func: (1) — (2) /\ /\
Putint func: (2) — (1) (5) (6) (6) (5)
i (2) 27

J (2)

AN Ul & W N —

Intermediate Form (IF)

* Generated after semantic analysis

— In many compilers, an AST is passed as IF
from the front end to the back end

— In other compilers, a control flow graph is
passed as IF

Optimization [1]

* High-level optimization
— Goal: perform high-level analysis and
optimization of programs
—Input: AST + symbol table

— Output: low-level program representation,
such as 3-address code(TAC)

— Tasks:

* Procedure/method inlining
* Array/pointer dependence analysis
* Loop transformations: unrolling, permutation, ...

Optimization [1]

* Low-level optimization
— Goal: perform low-level analysis and
optimizations
— Input: low-level representation of programs, such
as 3-address code

— Output: optimized low-level representation, and
additional information, such as def-use chains

— Tasks:
» Dataflow analysis: live variables, reaching definitions,

» Scalar optimizations: constant propagation, partial
redundancy elimination, ...

Code Generator [1]

* Goal: produce assembly/machine code
from optimized low-level representation
of programs

 Tasks:

— Register allocation
— Instruction selection

Reference

[1] Keshav Pingali, Advanced Topics in

Compilers,
https://www.cs.utexas.edu/~pingali/CS38

0C/2013/lectures/intro.pdf

