
The Design and Implementation
of Programming Languages

In Text: Chapter 1

Language Implementation Methods

• Compilation
• Interpretation
• Hybrid

2

Compilation

• Translate high-level programs to
machine code

• Slow translation
• Fast execution

3

Interpretation

• Interpret one statement and then
execute it on a virtual machine

• No translation
• Slow execution
• E.g., Basic

4

Compilation vs. Interpretation

• Compilation
– Better performance
• No runtime cost for interpretation
• Program optimization

• Interpretation
– Better diagnosis (with excellent source-

level debugger)
– Earlier diagnosis (execute erroneous

program)

5

Hybrid Implementation

• Quick start in “Interpretation” mode
• Compile code on hot paths to speed up
– E.g., Just-in-Time (JIT) compiler in Java

Virtual Machine (JVM)

6

7

Hybrid Implementation (Java)

Implementation Strategies in
Practice

• Preprocessing
• Library routines and linking
• Post-compilation assembly
• Source-to-source translation
• Bootstrapping

8

Preprocessing (Basic)
• An initial translator
– to remove comments and white spaces,
– to group characters together into tokens such as

keywords, identifiers, numbers, and symbols,
– to expand abbreviations in the style of a macro

assembler, and
– to identify higher-level syntactic structures,

such as loops and subroutines
• Goal
– To provide an intermediate form that mirrors

the structure of the source, but can be
interpreted more efficiently

9

Preprocessing (C)

• Conditional compilation
– Delete portions of code to allow several

versions of a program to be built from the
same source

10

Library routines and linking (Fortran)

• The compilation of source code counts
on the existence of a library of
subroutines invoked by the program

11

Post-compilation assembly (gcc)

• Source code is first compiled to assembly
code, and then the assembler translates it
to machine code
– To facilitate debugging (assembly code is

easier to read)
– To isolate the compiler from changes in the

format of machine language files (only the
commonly shared assembler must be changed)

12

Source-to-Source Translation

• AT&T C++ compiler
– To translate C++ programs to C programs
– To facilitate reuse of compilers or language

support

13

Bootstrapping

• Many compilers are self-hosting:
– They are written in the language they

compile
– Bootstrapping is used to compile the

compiler in the first place

14

Pascal->MC
compiler,
in Pascal

Pascal->P-code
compiler,
in P-code

Pascal->MC
compiler,
in P-code

P-code->MC
interpreter,

in MC

Pascal->MC
compiler,
in MC

15

Pascal MC

Pascal Pascal P-code

P-code

Pascal MC

P-code P-code MC

MC

Pascal MC

MC

Overview of Compilation

16

Front end & back end

• Front end
– To analyze the source code in order to build

an internal representation (IR) of the
program

– It includes: lexical analysis, syntactic
analysis, and semantic analysis

• Back end
– To gather and analyze program information

from IR, to optimize the code, and to
generate machine code

– It includes: optimization and code generation
17

Scanning (Lexical Analysis)

• Break the program into “tokens”—the
smallest meaningful units
– This can save time, since character-by-

character processing is slow
• We can tune the scanner better
– E.g., remove spaces & comments

• A scanner uses a Deterministic Finite
Automaton (DFA) to recognize tokens

18

A running example: Greatest Common
Divisor (GCD)

int main() {
int i = getint(),

j = getint();
while (i != j) {

if (i > j) i = i – j;
else j = j – i;

}
putint(i);

}

19

Token sequence:
int main () {
int i = getint
() , j =
getint () ; while
(i != j)
{ if (i >
j) i = i
- j ; else j
= j - i ;
} putint (i)
; }

Parsing

• Organize tokens into a parse tree that
represents higher-level constructs
(statements, expressions, subroutines)
– Each construct is a node in the tree
– Each construct’s constituents are its

children

20

GCD Parsing Tree

21

Semantic Analysis

• Determine the meaning of a program
• A semantic analyzer builds and

maintains a symbol table data structure
that maps each identifier to the
information known about it, such as the
identifier’s type, internal structure, and
scope

22

Semantic Analysis

• With the symbol table, the semantic
analyzer can enforce a large variety of
rules to check for errors

• Sample rules:
– Each identifier is declared before it is

used
– Any function with a non-void return type

returns a value explicitly
– Subroutine calls provide the correct

number and types of arguments
23

Semantic Analysis

• Static semantics
– Rules that can be checked at compile time

• Dynamic semantics
– Rules that must be checked at run time,

such as
• Variables should never be used in an expression

unless they have been given a value
• Pointers should never be dereferenced unless

they refer to a valid object

24

Syntax Tree

• A parse tree is known as a concrete
syntax tree
– It demonstrates concretely, how a

particular sequence of tokens can be
derived under the rule of the context-free
grammar

• However, much of the information in a
concrete syntax tree is irrelevant
– E.g., ε under some branches

25

Syntax Tree

• In the process of checking static
semantic rules, a semantic analyzer
transforms the parse tree into an
abstract syntax tree (AST, or syntax
tree) by
– removing “unimportant” nodes, and
– annotating remaining nodes with

information like pointers from identifiers
to their symbol table entries

26

GCD Abstract Syntax Tree

27

Intermediate Form (IF)

• Generated after semantic analysis
– In many compilers, an AST is passed as IF

from the front end to the back end
– In other compilers, a control flow graph is

passed as IF

28

Optimization [1]

• High-level optimization
– Goal: perform high-level analysis and

optimization of programs
– Input: AST + symbol table
– Output: low-level program representation,

such as 3-address code(TAC)
– Tasks:
• Procedure/method inlining
• Array/pointer dependence analysis
• Loop transformations: unrolling, permutation, …

29

Optimization [1]

• Low-level optimization
– Goal: perform low-level analysis and

optimizations
– Input: low-level representation of programs, such

as 3-address code
– Output: optimized low-level representation, and

additional information, such as def-use chains
– Tasks:
• Dataflow analysis: live variables, reaching definitions,

…
• Scalar optimizations: constant propagation, partial

redundancy elimination, … 30

Code Generator [1]

• Goal: produce assembly/machine code
from optimized low-level representation
of programs

• Tasks:
– Register allocation
– Instruction selection

31

Reference

[1] Keshav Pingali, Advanced Topics in
Compilers,
https://www.cs.utexas.edu/~pingali/CS38
0C/2013/lectures/intro.pdf

32

