
11/29/18	

1	

Subprograms

In Text: Chapter 9

Parameters that are subroutines

•  In some situations, subroutine names
can be sent as parameters to other
subroutines

•  Only the transmission of computation is
necessary, which could be done by
passing a functional pointer

N.	Meng,	S.	Arthur	 2	

Two complications with subroutine
parameters

•  Are parameters type checked?
– Early Pascal and FORTRAN 77 do not type

check
– Later versions of Pascal, Modula-2, and

FORTRAN 90 do
– C and C++ do

N.	Meng,	S.	Arthur	 3	

Two complications with subroutine
parameters (cont’d)

•  What referencing environment should be
used for executing the passed subroutine?
– The environment of the call statement that

enacts the passed subroutine(shallow binding)
– The environment of the definition of the

subroutine(deep binding)
– The environment of the call statement that

passed it as an actual parameter(ad hoc
binding)

N.	Meng,	S.	Arthur	 4	

An Example function sub1() {
 var x;
 function sub2() {
 alert (x);
 };
 function sub3() {
 var x;
 x = 3;
 sub4(sub2);

 };
 function sub4(subx) {
 var x;
 x = 4;
 subx();
 };
 x = 1;
 sub3();

};
N.	Meng,	S.	Arthur	 5	

•  For shallow binding, the
referencing environment
of sub2 is sub4

•  For deep binding, the
referencing environment
of sub2 is sub1

•  For ad hoc binding, the
referencing environment
of sub2 is sub3

What is the output of alert(x)?

•  Shallow binding?

•  Deep binding?

•  Ad hoc binding?

N.	Meng,	S.	Arthur	 6	

11/29/18	

2	

Referencing Environment for
Subroutine Parameters

•  Deep binding and ad hoc binding can be
the same when a subroutine is declared
and passed by the same subroutine

•  In reality, ad hoc binding has never been
used

•  Static-scoped languages usually use deep
binding

•  Dynamic-scoped languages usually use
shallow binding

N.	Meng,	S.	Arthur	 7	

Design Issues for Functions

•  Are side effects allowed?
– Ada requires in-mode parameters, and does

not allow any side effect
– Most languages support two-way

parameters, and thus allow functions to
cause side effects

N.	Meng,	S.	Arthur	 8	

Design Issues for Functions (cont’d)

•  What types of values can be returned?
– FORTRAN, Pascal, and Modula-2: only

simple types
– C: any type except functions and arrays
– Ada: any type (but subroutines are not

types)
– JavaScript: functions can be returned
– Python, Ruby and functional languages:

methods are objects that can be treated as
any other object

N.	Meng,	S.	Arthur	 9	

Overloaded Subroutine

•  A subroutine that has the same name as
another subroutine in the same
referencing environment, but its number,
order, or types of parameters must be
different
– E.g., void fun(float);

 void fun();
•  C++ and Ada have overloaded subroutines

built-in, and users can write their own
overloaded subroutines

N.	Meng,	S.	Arthur	 10	

Generic Subroutine

•  A generic or polymorphic subroutine takes
parameters of different types on different
activations

•  An example in C++

N.	Meng,	S.	Arthur	 11	

template<class Type>  
Type max(Type first, Type second) {  

return first > second ? first: second;  
}
int a, b, c;
char d, e, f;
…
c = max(a, b);
f = max(d, e);

Generic Subroutine (cont’d)
•  Overloaded subroutines provide a

particular kind of polymorphism called ad
hoc polymorphism
– Overloaded subroutines need not behave

similarly
•  Parametric polymorphism is provided by a

subroutine that takes generic parameters
to describe the types of parameters

•  Parametric polymorphic subroutines are
often called generic subroutines

N.	Meng,	S.	Arthur	 12	

11/29/18	

3	

Coroutine

•  A special kind of subroutine. Rather
than the master-slave relationship, the
caller and callee coroutines are on a
more equal basis

•  A coroutine is a subroutine that has
multiple entry points, which are
controlled by coroutines themselves

N.	Meng,	S.	Arthur	 13	

Coroutine
•  The first execution of a coroutine begins

at its beginning, but all subsequent
executions often begin at points other
than the beginning

•  Therefore, the invocation of a coroutine
is named a resume

•  Typically, coroutines repeatedly resume
each other, possibly forever

•  Their executions interleave, but do not
overlap

N.	Meng,	S.	Arthur	 14	

An Example
sub co1() {

 …
 resume(co2);
 …
 resume(co3);

}

N.	Meng,	S.	Arthur	 15	

•  The first time co1 is resumed, its
execution begins at the first
statement, and executes down to
resume(co2) (with the statement
included)

•  The next time co1 is resumed, its
execution begins at the first
statement after resume(co2)

•  The third time co1 is resumed,
its execution begins at the first
statement after resume(co3)

Coroutine

•  The interleaved execution sequence is
related to the way multiprogramming
operating systems work
– Although there may be one processor, all of

the executing programs in such a system
appear to run concurrently while sharing
the processor

– This is called quasi-concurrency
•  Coroutines provide quasi-concurrent

execution of program units
N.	Meng,	S.	Arthur	 16	

