FP Foundations, Scheme

In Text: Chapter 15

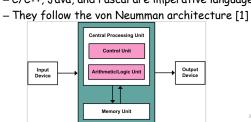
Outline

- · Mathematical foundations
- Functional programming
- \u03b4-calculus
- · LISP
- · Scheme

N. Meng, S. Arthur

Imperative Languages

- We have been discussing imperative languages
 - -C/C++, Java, and Pascal are imperative languages



Functional Programming

- A different way of looking at things
 - It is based on mathematical functions
 - It is supported by functional, and applicative, programming languages · LISP, ML, Haskell

N. Meng, S. Arthur

Mathematical Foundations

- A mathematical function is a mapping of members from one set to another set
 - The "input" set is called the domain
 - The "output" set is called the range

Mathematical Foundations

- · The evaluation order of mapping expressions is controlled by recursion and conditional expressions, rather than by the sequencing and iterative repetition
- Functions do not have states
 - They have no side effects
 - They always produce the same output given the same input parameters

Simple Functions

- Usual form: function name + a list of parameters in parentheses + mapping expression
- E.g., cube(x) = x * x * x, where
 - both the domain and range sets are real numbers, and
 - x can represent any member of the domain set, but it is fixed to represent one specific element during the expression evaluation

N. Meng, S. Arthur

Function Application

- It is specified by pairing the function name with a particular element of the domain set
- The range element is obtained by evaluating the function-mapping expression with the domain element substituted for the particular element

-Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

N. Meng, S. Arthur

Functional Forms

- A higher-order function, or functional form, is one that either takes functions as parameters, or yields a function as its result, or both
- · Two common functional forms
 - Function composition
 - Apply-to-all

N. Meng, S. Arthur

Function Composition

- Function composition has two functional parameters and yields a function whose value is the first function applied to the result of the second
- It is written as an expression, using a ° operator (called "circle" or "round")

- E.g., h = f
$$^{\circ}$$
g
if f(x) = x + 2, and
 $g(x) = 3 * x$
then h(x) = f(g(x)) = (3 * x) + 2

Apply-to-all

- Apply-to-all takes a single function as a parameter
- If applied to a list of arguments, apply-toall applies its functional parameter to each element of the list, and then collects results in a list or sequence
- It is denoted by α - E.g., h(x) = x * x, then $\alpha(h, (2, 3, 4)) = (4, 9, 16)$

N. Meng, S. Arthur

Lambda expression

- Early theoretical work on functions separated the task of defining a function from that of naming the function
- Lambda notation, $\lambda,$ provides a method for defining nameless functions
- A lambda expression is a function, which specifies the parameters, and the mapping expression

$$-E.g.$$
, $\lambda(x)x * x * x$

N. Meng, S. Arthur

12

Lambda-Calculus

 In the mid 1960s, Peter Landin observed that a complex programming language can be understood by formulating it as a tiny core calculus capturing the language's essential mechanisms, together with a collection of convenient derived forms whose behavior is understood by translating them into the core

leng, S. Arthur

Lambda-Calculus

 The core language used by Landin was the lambda-calculus, a formal system invented in the 1920s by Alonzo Church in which all computation is reduced to the basic operations of function definition and application

N. Meng, S. Arthur

14

factorial Example

- factorial(n) =if n = 0 then 1 else n * factorial(n 1)
- The corresponding λ -calculs term is: factorial(n) =

 λn . if n=0 then 1 else n * factorial(n - 1)

- · Meaning
 - For each nonnegative number n, instantiating the function with the argument n yields the factorial of n as a result

N. Meng, S. Arthur

λ-calculus

- Lambda-calculus embodies function definition and application in the purest possible form
- In the lambda-calculus, everything is a function
 - the arguments accepted by functions are themselves functions, and
 - the result returned by a function is another function

N. Meng, S. Arthur

16

Syntax of λ -calculus

t ::= x (a variable)

 $| \lambda x.t$ (a function)

tt (function application)

- The syntax of lambda-calculus comprises three sorts of terms
 - Variable itself is a term
 - The abstraction of a variable x from a term t is a term
 - The application of term \mathbf{t}_1 to another term \mathbf{t}_2 , is a term

N. Meng, S. Arthur

Two conventions of writing lambdaterms

- Application is left associative
 - Given s t u, the calculation is (s t) u

N. Meng, S. Arthur

18

Two Conventions

- The body of abstraction is extended to right as much as possible
 - Given λx . λy . x y x, the calculation is λx . (λy . ((x y) x)) λx

eng, S. Arthur

Scope

- An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction λx . t
- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x
 - In x y, and λy . x y, x is free
 - In λx . x, and λz . λx . λy . x (y z), x is bound

N. Meng, S. Arthur

Scope

- A term with no free variable is said to be closed
- Closed terms are also called combinators
- The simplest combinator is called the identity function: id = λx, x

N. Meng, S. Arthur

Operational Semantics

- $(\lambda x. t_{12})t_2 \rightarrow (x \mapsto t_2)t_{12}$
 - Evaluate the term $\rm t_{12}\,by$ replacing every occurrence of x with $\rm t_2$
 - What is the reduction result of $(\lambda x. x) y$?
 - What is the evaluation result of the term (λx . $\times (\lambda x. x)(u r)$?
 - All terms of the form $(\lambda x. t_{12})t_2$ is called redex (reducible expression)
 - The operation of rewriting a redex according to the above rule is called beta-reduction

N. Meng, S. Arthur

22

An Example of Reduction

- (λx. x) ((λx. x)(λz. (λx. x) z))
- \rightarrow ($\lambda x. x$)($\lambda z. (\lambda x. x) z$)
- -> λz. (λx. x) z

S. Arthur

Programming in the Lambda-Calculus

- Multiple arguments
 - Lambda-calculus provides no built-in support for multi-argument functions
 - But we can use higher-order functions to achieve the same effect

N. Meng, S. Arthur

r

Multiple Arguments

- Suppose
 - $-\,s$ is a term involving two free variables x and y
 - We want to write a function f, such that for each pair of arguments (v, w), f yields the result of substituting v for x, and w for v.
 - $-f = \lambda x. \lambda y. s$
 - Applying f to (v, w): f v w

N. Meng, S. Arthur

25

Multiple Arguments

 The transformation of multi-argument functions into higher-order functions is called *currying*

N. Meng, S. Arthur