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DYNAMIC SEMANTICS 
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Dynamic Semantics 

•  Describe the meaning of expressions, 
statements, and program units 

•  No single widely acceptable notation or 
formalism for describing semantics 

•  Two common approaches: 
– Operational 
– Denotational 
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Operational Semantics 

•  Gives a program's meaning in terms of 
its implementation on a real or virtual 
machine 

•  Change in the state of the machine  
(memory, registers, etc.) defines the 
meaning of the statement 
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Operational Semantics Definition Process 

1.  Design an appropriate intermediate 
language. Each construct of the 
intermediate language must have an 
obvious and unambiguous meaning 

2.  Construct a virtual machine (an 
interpreter) for the intermediate 
language. The virtual machine can be used 
to execute either single statements, code 
segments, or whole programs 

N.	Meng,	S.	Arthur	 4	

An Example 

•  The virtual computer is supposed to be 
able to correctly “execute” the 
instructions and recognize the effects 
of the “execution” 

C Operational Semantics 

for (expr1; expr2; expr3) 
{
  . . . 
}

      expr1;
loop: if expr2 == 0 goto out
        . . .
        expr3;
        goto loop
out:  . . .
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Key Points of Operational Semantics 

•  Advantages 
– May be simple and intuitive for small 

examples 
– Good if used informally 
– Useful for implementation 

•  Disadvantages 
– Very complex for large programs 
– Lacks mathematical rigor 
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Typical Usage of Operational 
Semantics 

•  Vienna Definition Language (VDL) used to 
define PL/I (Wegner 1972) 

•  Unfortunately, VDL is so complex that it 
serves no practical purpose 
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Denotational Semantics 

•  The most rigorous, widely known method 
for describing the meaning of programs 

•  Solely based on recursive function 
theory 

•  Originally developed by Scott and 
Strachey (1970) 
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Denotational Semantics 

•  Key Idea 
– Define for each language entity both a 

mathematical object, and a function that 
maps instances of that entity onto 
instances of the mathematical object 

•  The basic idea 
– There are rigorous ways of manipulating 

mathematical objects but not programming 
language constructs 
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Denotational Semantics 

•  Difficulty  
– How to create the objects and the mapping 

functions? 
•  The method is named denotational, 

because the mathematical objects 
denote the meaning of their 
corresponding syntactic entities 
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Denotational vs. Operational 

•  Both denotational semantics and 
operational semantics are defined in terms 
of state changes in a virtual machine 

•  In operational semantics, the state changes 
are defined by coded algorithms in the 
machine 

•  In denotational semantics, the state change 
is defined by rigorous mathematical 
functions 
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Program State 
•  Let the state s of a program be a set of 

pairs as follows: 
  {<i1, v1>, <i2, v2>, …, <in, vn>} 
– Each i is the name of a variable 
– The associated v is the current value of the 

variable 
– Any v can have the special value undef, 

indicating that the associated variable is 
undefined 

•  Let VARMAP be a function as follows: 
  VARMAP(ij, s) = vj 
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Program State 

•  Most semantics mapping functions for 
programs and program constructs map 
from states to states 

•  These state changes are used to define 
the meanings of programs and program 
constructs 

•  Some language constructs, such as 
expressions, are mapped to values, not 
state changes 
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An Example 

•  CFG for binary numbers  
  <bin_num> -> ‘0’ 
  <bin_num> -> ‘1’ 
  <bin_num> -> <bin_num> ‘0’ 
  <bin_num> -> <bin_num> ‘1’ 

•  Parse tree of the binary number 110 
<bin_num>

<bin_num>

<bin_num>

‘1’

‘1’

‘0’
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Example Semantic Rule Design 
•  Mathematical objects 
– Decimal number equivalence for each binary 

number  
•  Functions 
– Map binary numbers to decimal numbers 
– Rules with terminals as RHS are translated as 

direct mappings from terminals to 
mathematical objects 

– Rules with nonterminals as RHS are translated 
as manipulations on mathematical objects 
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Example Semantic Rules 

Syntax Rules Semantic Rules

<bin_num>->‘0’
<bin_num>->‘1’
<bin_num>-><bin_num> ‘0’
<bin_num>-><bin_num> ‘1’

Mbin(‘0’)=0
Mbin(‘1’)=1
Mbin(<bin_num> ‘0’)=  
    2*Mbin(<bin_num>)
Mbin(<bin_num> ‘1’)=  
    2*Mbin(<bin_num>)+1
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Expressions 

•  CFG for expressions 
 <expr>  -> <dec_num> | <var> | <binary_expr> 

    <binary_expr> -> <l_expr> <op> <r_expr> 
    <l_expr> -> <dec_num> | <var> 
    <r_expr> -> <dec_num> | <var> 
    <op> -> + | * 
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Expressions 
Me(<expr>, s) Δ= 
    case <expr> of 
      <dec_num> ⇒ Mdec(<dec_num>) 
      <var> ⇒ VARMAP(<var>, s) 
      <binary_expr> ⇒ 
         if (<binary_expr>.<op> = ‘+’) then 
             Me(<binary_expr>.<l_expr>, s) +  
             Me(<binary_expr>.<r_expr>, s) 
         else 
             Me(<binary_expr>.<l_expr>, s) × 
             Me(<binary_expr>.<r_expr>, s) N.	Meng,	S.	Arthur	 18	
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Statement Basics 

•  The meaning of a single statement 
executed in a state s is a new state s’, 
which reflects the effects of the 
statement 
  Mstmt( stmt , s) = s’ 
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Assignment Statements 

Ma(x := E, s) Δ= 
   s’ = {<i1’, v1’>, <i2’, v2’>, ..., <in’,vn’>}, 

       where for j = 1, 2, ..., n, 
              vj’ = VARMAP(ij, s)   if   ij ≠ x 
              vj’ = Me(E, s)            if   ij = x 
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Sequence of Statements 

 Mstmt( stmt1; stmt2 , s) Δ= 

     Mstmt( stmt2 , Mstmt( stmt1 , s)) 
or  
 Mstmt( stmt1; stmt2 , s) = s’’ where 

     s’ = Mstmt( stmt1 , s) 

     s’’ = Mstmt( stmt2 , s’) 
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Sequence of Statements 

Initial state s0 = <mem0, i0, o0> 
Mstmt( P0, s0) = Mstmt( P1, Ma( x := 5  , s0)) 

           s1 

s1 = <mem1, i1, o1> where 
 VARMAP(x, s1) = 5 
 VARMAP(z, s1) = VARMAP(z, s0) for all z ≠ x 
 i1 = i0, o1 = o0 

} P2 

x := 5;                             
y := x + 1; 
write(x * y);      }  P1 }  P0 
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Sequence of Statements 

Mstmt( P1, s1) = Mstmt( P2, Ma( y := x + 1, s1))  
           s2 

s2 = <mem2, i2, o2> where 
 VARMAP(y, s2) = Me( x + 1, s1) = 6 
 VARMAP(z, s2) = VARMAP(z, s1) for all z ≠ y 
 i2 = i1, o2 = o1 

 
 
 
 

} P2 

x := 5;                             
y := x + 1; 
write(x * y);      }  P1 }  P0 
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Sequence of Statements 

Mstmt( P2, s2) = Mstmt( write(x * y), s2) = s3 
s3 = <mem3, i3, o3> where 

 VARMAP(z, s3) = VARMAP(z, s2) for all z 
 i3 = i2, o3 = o2 • Me(x * y, s2) = o2 • 30 

 
 

} P2 

x := 5;                             
y := x + 1; 
write(x * y);      }  P1 }  P0 
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Sequence of Statements 

Therefore,  
Mstmt( P,  s0) = s3 = <mem3, i3, o3 > where 
     VARMAP(y, s3) = 6 
     VARMAP(x, s3) = 5 
     VARMAP(z, s3) = VARMAP(z, s0) for all z ≠ x, y 
     i3 = i0 
     o3 = o0 • 30 
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Logical Pretest Loops 
•  The meaning of the loop is the value of 

program variables after the loop body has 
been executed the prescribed number of 
times, assuming there have been no errors 

•  The loop is converted from iteration to 
recursion, where the recursion control is 
mathematically defined by other recursive 
state mapping functions 

•  Recursion is easier to describe with 
mathematical rigor than iteration 
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Logical Pretest Loop 

•  Ml(while B do L, s) Δ= 
       if  Mb(B, s) = false  then 
           s 
       else 
           Ml(while B do L, Mstmt(L, s)) 
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Postest Loop ? 

•  Mptl(do L until not B, s) Δ =  ? 
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Key Points of Denotational Semantics 

•  Advantages 
– Compact & precise, with solid mathematical 

foundation 
– Provide a rigorous way to think about 

programs 
– Can be used to prove the correctness of 

programs 
– Can be an aid to language design 
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Key Points of Denotational Semantics 

•  Disadvantages 
– Require mathematical sophistication 
– Hard for programmer to use 

•  Uses 
– Semantics for Algol-60, Pascal, etc. 
– Compiler generation and optimization 
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Summary 

•  Each form of semantic description has 
its place 

•  Operational semantics  
– Informally describe the meaning of 

language constructs in terms of their 
effects on an ideal machine 

•  Denotational semantics 
– Formally define mathematical objects and 

functions to represent the meanings 
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