
10/30/18	

1	

DYNAMIC SEMANTICS

N.	Meng,	S.	Arthur	 1	

Dynamic Semantics

•  Describe the meaning of expressions,
statements, and program units

•  No single widely acceptable notation or
formalism for describing semantics

•  Two common approaches:
– Operational
– Denotational

N.	Meng,	S.	Arthur	 2	

Operational Semantics

•  Gives a program's meaning in terms of
its implementation on a real or virtual
machine

•  Change in the state of the machine
(memory, registers, etc.) defines the
meaning of the statement

N.	Meng,	S.	Arthur	 3	

Operational Semantics Definition Process

1.  Design an appropriate intermediate
language. Each construct of the
intermediate language must have an
obvious and unambiguous meaning

2.  Construct a virtual machine (an
interpreter) for the intermediate
language. The virtual machine can be used
to execute either single statements, code
segments, or whole programs

N.	Meng,	S.	Arthur	 4	

An Example

•  The virtual computer is supposed to be
able to correctly “execute” the
instructions and recognize the effects
of the “execution”

C Operational Semantics

for (expr1; expr2; expr3)
{
 . . .
}

 expr1;
loop: if expr2 == 0 goto out
 . . .
 expr3;
 goto loop
out: . . .

N.	Meng,	S.	Arthur	 5	

Key Points of Operational Semantics

•  Advantages
– May be simple and intuitive for small

examples
– Good if used informally
– Useful for implementation

•  Disadvantages
– Very complex for large programs
– Lacks mathematical rigor

N.	Meng,	S.	Arthur	 6	

10/30/18	

2	

Typical Usage of Operational
Semantics

•  Vienna Definition Language (VDL) used to
define PL/I (Wegner 1972)

•  Unfortunately, VDL is so complex that it
serves no practical purpose

N.	Meng,	S.	Arthur	 7	

Denotational Semantics

•  The most rigorous, widely known method
for describing the meaning of programs

•  Solely based on recursive function
theory

•  Originally developed by Scott and
Strachey (1970)

N.	Meng,	S.	Arthur	 8	

Denotational Semantics

•  Key Idea
– Define for each language entity both a

mathematical object, and a function that
maps instances of that entity onto
instances of the mathematical object

•  The basic idea
– There are rigorous ways of manipulating

mathematical objects but not programming
language constructs

N.	Meng,	S.	Arthur	 9	

Denotational Semantics

•  Difficulty
– How to create the objects and the mapping

functions?
•  The method is named denotational,

because the mathematical objects
denote the meaning of their
corresponding syntactic entities

N.	Meng,	S.	Arthur	 10	

Denotational vs. Operational

•  Both denotational semantics and
operational semantics are defined in terms
of state changes in a virtual machine

•  In operational semantics, the state changes
are defined by coded algorithms in the
machine

•  In denotational semantics, the state change
is defined by rigorous mathematical
functions

N.	Meng,	S.	Arthur	 11	

Program State
•  Let the state s of a program be a set of

pairs as follows:
 {<i1, v1>, <i2, v2>, …, <in, vn>}
– Each i is the name of a variable
– The associated v is the current value of the

variable
– Any v can have the special value undef,

indicating that the associated variable is
undefined

•  Let VARMAP be a function as follows:
 VARMAP(ij, s) = vj

N.	Meng,	S.	Arthur	 12	

10/30/18	

3	

Program State

•  Most semantics mapping functions for
programs and program constructs map
from states to states

•  These state changes are used to define
the meanings of programs and program
constructs

•  Some language constructs, such as
expressions, are mapped to values, not
state changes

N.	Meng,	S.	Arthur	 13	

An Example

•  CFG for binary numbers
 <bin_num> -> ‘0’
 <bin_num> -> ‘1’
 <bin_num> -> <bin_num> ‘0’
 <bin_num> -> <bin_num> ‘1’

•  Parse tree of the binary number 110
<bin_num>

<bin_num>

<bin_num>

‘1’

‘1’

‘0’

N.	Meng,	S.	Arthur	 14	

Example Semantic Rule Design
•  Mathematical objects
– Decimal number equivalence for each binary

number
•  Functions
– Map binary numbers to decimal numbers
– Rules with terminals as RHS are translated as

direct mappings from terminals to
mathematical objects

– Rules with nonterminals as RHS are translated
as manipulations on mathematical objects

N.	Meng,	S.	Arthur	 15	

Example Semantic Rules

Syntax Rules Semantic Rules

<bin_num>->‘0’
<bin_num>->‘1’
<bin_num>-><bin_num> ‘0’
<bin_num>-><bin_num> ‘1’

Mbin(‘0’)=0
Mbin(‘1’)=1
Mbin(<bin_num> ‘0’)=  
 2*Mbin(<bin_num>)
Mbin(<bin_num> ‘1’)=  
 2*Mbin(<bin_num>)+1

N.	Meng,	S.	Arthur	 16	

Expressions

•  CFG for expressions
 <expr> -> <dec_num> | <var> | <binary_expr>

 <binary_expr> -> <l_expr> <op> <r_expr>
 <l_expr> -> <dec_num> | <var>
 <r_expr> -> <dec_num> | <var>
 <op> -> + | *

N.	Meng,	S.	Arthur	 17	

Expressions
Me(<expr>, s) Δ=
 case <expr> of
 <dec_num> ⇒ Mdec(<dec_num>)
 <var> ⇒ VARMAP(<var>, s)
 <binary_expr> ⇒
 if (<binary_expr>.<op> = ‘+’) then
 Me(<binary_expr>.<l_expr>, s) +
 Me(<binary_expr>.<r_expr>, s)
 else
 Me(<binary_expr>.<l_expr>, s) ×
 Me(<binary_expr>.<r_expr>, s) N.	Meng,	S.	Arthur	 18	

10/30/18	

4	

Statement Basics

•  The meaning of a single statement
executed in a state s is a new state s’,
which reflects the effects of the
statement
 Mstmt(stmt , s) = s’

N.	Meng,	S.	Arthur	 19	

Assignment Statements

Ma(x := E, s) Δ=
 s’ = {<i1’, v1’>, <i2’, v2’>, ..., <in’,vn’>},

 where for j = 1, 2, ..., n,
 vj’ = VARMAP(ij, s) if ij ≠ x
 vj’ = Me(E, s) if ij = x

N.	Meng,	S.	Arthur	 20	

Sequence of Statements

 Mstmt(stmt1; stmt2 , s) Δ=

 Mstmt(stmt2 , Mstmt(stmt1 , s))
or
 Mstmt(stmt1; stmt2 , s) = s’’ where

 s’ = Mstmt(stmt1 , s)

 s’’ = Mstmt(stmt2 , s’)

N.	Meng,	S.	Arthur	 21	

Sequence of Statements

Initial state s0 = <mem0, i0, o0>
Mstmt(P0, s0) = Mstmt(P1, Ma(x := 5 , s0))

 s1

s1 = <mem1, i1, o1> where
 VARMAP(x, s1) = 5
 VARMAP(z, s1) = VARMAP(z, s0) for all z ≠ x
 i1 = i0, o1 = o0

} P2

x := 5;
y := x + 1;
write(x * y); } P1 } P0

N.	Meng,	S.	Arthur	 22	

Sequence of Statements

Mstmt(P1, s1) = Mstmt(P2, Ma(y := x + 1, s1))
 s2

s2 = <mem2, i2, o2> where
 VARMAP(y, s2) = Me(x + 1, s1) = 6
 VARMAP(z, s2) = VARMAP(z, s1) for all z ≠ y
 i2 = i1, o2 = o1

} P2

x := 5;
y := x + 1;
write(x * y); } P1 } P0

N.	Meng,	S.	Arthur	 23	

Sequence of Statements

Mstmt(P2, s2) = Mstmt(write(x * y), s2) = s3
s3 = <mem3, i3, o3> where

 VARMAP(z, s3) = VARMAP(z, s2) for all z
 i3 = i2, o3 = o2 • Me(x * y, s2) = o2 • 30

} P2

x := 5;
y := x + 1;
write(x * y); } P1 } P0

N.	Meng,	S.	Arthur	 24	

10/30/18	

5	

Sequence of Statements

Therefore,
Mstmt(P, s0) = s3 = <mem3, i3, o3 > where
 VARMAP(y, s3) = 6
 VARMAP(x, s3) = 5
 VARMAP(z, s3) = VARMAP(z, s0) for all z ≠ x, y
 i3 = i0
 o3 = o0 • 30

N.	Meng,	S.	Arthur	 25	

Logical Pretest Loops
•  The meaning of the loop is the value of

program variables after the loop body has
been executed the prescribed number of
times, assuming there have been no errors

•  The loop is converted from iteration to
recursion, where the recursion control is
mathematically defined by other recursive
state mapping functions

•  Recursion is easier to describe with
mathematical rigor than iteration

N.	Meng,	S.	Arthur	 26	

Logical Pretest Loop

•  Ml(while B do L, s) Δ=
 if Mb(B, s) = false then
 s
 else
 Ml(while B do L, Mstmt(L, s))

N.	Meng,	S.	Arthur	 27	

Postest Loop ?

•  Mptl(do L until not B, s) Δ = ?

N.	Meng,	S.	Arthur	 28	

Key Points of Denotational Semantics

•  Advantages
– Compact & precise, with solid mathematical

foundation
– Provide a rigorous way to think about

programs
– Can be used to prove the correctness of

programs
– Can be an aid to language design

N.	Meng,	S.	Arthur	 29	

Key Points of Denotational Semantics

•  Disadvantages
– Require mathematical sophistication
– Hard for programmer to use

•  Uses
– Semantics for Algol-60, Pascal, etc.
– Compiler generation and optimization

N.	Meng,	S.	Arthur	 30	

10/30/18	

6	

Summary

•  Each form of semantic description has
its place

•  Operational semantics
– Informally describe the meaning of

language constructs in terms of their
effects on an ideal machine

•  Denotational semantics
– Formally define mathematical objects and

functions to represent the meanings

N.	Meng,	S.	Arthur	 31	

Reference

[1] Cormac Flanagan, A Simple Langauge of
Arithmetic Expressions,
https://classes.soe.ucsc.edu/cmps203/
Winter11/02-arith-bigstep.ppt.pdf
[2] Cormac Flanagan, Operational
Semantics: Big-Step vs. Small-Step,
https://classes.soe.ucsc.edu/cmps203/
Winter11/04-smallstep.ppt.pdf

 N.	Meng,	S.	Arthur	 32	

