
10/9/18	

1	

Lexical and Syntax Analysis (3) 

In Text: Chapter 4 

Motivating Example 

•  Consider the grammar 
    S -> cAd 
    A -> ab | a 

•  Input string: w = cad 
•  How to build a parse tree top-down? 

2	

Recursive-Descent Parsing 

•  Initially create a tree containing a 
single node S (the start symbol) 

•  Apply the S-rule to see whether 
the first token matches 
– If matches, expand the tree 
•  Apply the A-rule to the leftmost 

nonterminal A 
– Since the first token matches both 

alternatives (A1 and A2), randomly pick one 
(e.g., A1) to apply 

3	

S 

c A d 

S 

c A d 

a b 

Recursive-Descent Parsing 
– Since the third token d does not match b, report 

failure and go back to A to try another 
alternative 

–  Rollback to the state before applying A1 rule, 
and then apply the alternative rule 

–  The third token matches, so parsing is 
successfully done 

4	

S 

c A d 

a b 

S 

c A d 

✖	
a 

Recursive-Descent Parsing Algorithm 
Suppose we have a scanner which generates the next token as needed. 
Given a string, the parsing process starts with the start symbol rule: 
1. if there is only one RHS then 
2.   for each terminal in the RHS 
3.     compare it with the next input token  
4.       if they match, then continue 
5.         else report an error 
6.   for each nonterminal in the RHS 
7.     call its corresponding subprogram and try match 
8. else // there is more than one RHS  
9.   choose the RHS based on the next input token (the lookahead) 
10.  for each chosen RHS   
11.     try match with 2-7 mentioned above 
12.  if no match is found, then report an error 

5	

Recursive-Descent Parsing 

•  There is a subprogram for each 
nonterminal in the grammar, which can 
parse sentences that can be generated 
by that nonterminal 

•  EBNF is ideally suited for being the 
basis for a recursive-descent parser, 
because EBNF minimizes the number of 
nonterminals 

6	



10/9/18	

2	

•  A grammar for simple expressions: 
 
<expr> → <term> {(+ | -) <term>} 

<term> → <factor> {(* | /) <factor>} 

<factor> → id | int_constant | ( <expr> ) 

7	

An Example 
/* Function expr parses strings in the language
   generated by the rule: <expr> → <term> {(+ | -) <term>} */

void expr() {
  printf(“Enter <expr>\n”);
/* Parse the first term */
 
  term(); 
/* As long as the next token is + or -, call lex to get the 

next token and parse the next term */
 
  while (nextToken == ADD_OP || 
         nextToken == SUB_OP){
    lex();
    term();  
  }
  printf(“Exit <expr>\n”);
} 8	

•  This particular routine does not detect 
errors 

•  Convention: Every parsing routine leaves 
the next token in nextToken 

9	

An Example (cont’d) 
/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>) */
void term() {
  printf(“Enter <term>\n”);
/* Parse the first factor */
  factor();

/* As long as the next token is * or /,
   next token and parse the next factor */
  while (nextToken == MULT_OP || nextToken == DIV_OP) {
    lex();
    factor();
  }
  printf(“Exit <term>\n”);
} /* End of function term */

10	

/* Function factor parses strings in the language 
generated by the rule: <factor> -> id  | int_constant | 
(<expr>)  */

 void factor() {
  printf(“Enter <factor>\n”);
 /* Determine which RHS */
  if (nextToken) == ID_CODE || nextToken == INT_CODE)
   /* For the RHS id, just call lex */
     lex();

 /* If the RHS is (<expr>) – call lex to pass over the 
left parenthesis, call expr, and check for the right 
parenthesis */

  else if (nextToken == LP_CODE) {
      lex();
      expr();
      if (nextToken == RP_CODE)
        lex();
      else
        error();
  }  /* End of else if (nextToken == ...  */
  else error(); /* Neither RHS matches */
  
  printf(“Exit <factor>\n”);
} 11	

Token codes 
#define INT_LIT 10
#define IDENT 11
#define ASSIGN_OP 20
#define ADD_OP 21
#define SUB_OP 22
#define MULT_OP 23
#define DIV_OP 24
#define LEFT_PAREN 25
#define RIGHT_PAREN 26 

12	



10/9/18	

3	

Recursive-Descent Parsing 
(continued) 

Trace of the lexical and syntax analyzers on (sum+47)/total 
 
Next token is: 25 Next lexeme is ( 
Enter <expr> 
Enter <term> 
Enter <factor> 
Next token is: 11 Next lexeme is sum 
Enter <expr> 
Enter <term> 
Enter <factor> 
Next token is: 21 Next lexeme is + 
Exit <factor> 
… 
Next token is: -1 Next lexeme is EOF 
 
 13	

Key points about recursive-descent 
parsing 

•  Recursive-descent parsing may require 
backtracking 

•  LL(1) does not allow backtracking 
– By only looking at the next input token, we 

can always precisely decide which rule to 
apply 

•  By carefully designing a grammar, i.e., 
LL(1) grammar, we can avoid backtracking 

14	

Two Obstacles to LL(1)-ness 

•  Left recursion 
– E.g., id_list -> id_list_prefix ; 

    id_list_prefix -> id_list_prefix, id | id 
– When the next token is id, which rule 

should we apply? 
•  Common prefixes 
– E.g., A -> ab | a 
– When the next token is a, which rule should 

we apply? 

15	

Common prefixes 

•  Unable to decide which RHS should use 
by simply checking one token of lookahead  

•  Pairwise Disjointness Test 
– For each nonterminal A with more than one 

RHS, for each pair of rules, the possible 
first characters of the strings (FIRST set) 
should be disjoint 
•  If A -> α1|α2, then FIRST(α1) ⋂ FIRST(α2) = φ 

16	

LL(1) Grammar 

•  Grammar which can be processed with 
LL(1) parser 

•  Non-LL grammar can be converted to 
LL(1) grammar via: 
– Left-recursion elimination 
– Left factoring by extracting common 

prefixes 

17	

Left-Recursion Elimination 

•  Replace left-recursion with right-
recursion 
 id_list -> id_list_prefix ; 
 id_list_prefix -> id_list_prefix, id | id 
 => 
 id_list -> id id_list_tail  
 id_list_tail -> ; | , id id_list_tail 

18	



10/9/18	

4	

Left Factoring 

•  Extract the common prefixes, and 
introduce new nonterminals as needed 
 A -> ab | a 
 => 
 A -> aB 
 B -> b | ε 

19	

Non-LL Languages 
•  Simply eliminating left recursion and 

common prefixes is not guaranteed to make 
LL(1)  

•  An example in Pascal:  
stmt -> if condition then_clause else_clause  
     | other_stmt 
then_clause -> then stmt 
else_clause -> else stmt | ε 

•  How to parse “if C1 then if C2 then S1 else S2” ? 

20	

Non-LL Languages 

•  Define “disambiguating rule”, use it 
together with ambiguous grammar to 
parse top-down 
– E.g., in the case of a conflict between two 

possible productions, the one to use is the 
one that occurs first, textually in the 
grammar 

– to pair the else with the nearest then 
•  “Disambiguating rule” can be also 

defined for bottom-up parsing 
21	

Table-Driven Parsing 

•  It is possible to build a non-recursive 
predictive parser by maintaining a stack 
explicitly, rather than implicitly via 
recursive calls 

•  The non-recursive parser looks up the 
production to be applied in a parsing 
table. 

•  The table can be constructed directly 
from LL(1) grammars 

22	

Table-Driven 
Parsing 

•  An input buffer 
– Contains the input string  
– The string can be followed by $, an end marker to 

indicate the end of the string 
•  A stack 
– Contains symbols with $ on the bottom, with the 

start symbol initially on the top 
•  A parsing table (2-dimensional array M[A, a]) 
•  An output stream (production rules applied for 

derivation) 
23	

Input: a string w, a parsing table M for grammar G 
Output: if w is in L(G), a leftmost derivation of w; otherwise, an error 
indication 
Method: 

 set ip to point to the first symbol of w$ 
 repeat  
  let X be the top stack symbol and a the symbol pointed to by ip; 
  if X is a terminal or $, then 
   if X = a then   
    pop X from the stack and advance ip 
   else error() 
  else      /* X is a non-terminal */ 
   if M[X, a] = X->Y1Y2…Yk, then   
    pop X from the stack 
    push Yk, …, Y2, Y1 onto the stack 
    output the production X->Y1Y2…Yk 
   end 
   else error() 
 until X = $ 

24	



10/9/18	

5	

An Example 

•  Input String: id + id * id 
•  Input parsing table for the following 

grammar  
E -> TE’ 
E’ -> +TE’ | ε 
T -> FT’ 
T’ -> *FT’ | ε 
F -> (E) | id 

25	

LL Parsing 

Stack Input Output 
$E id + id * id$ 

$E’T id + id * id$ E -> TE’ 
$E’T’F id + id * id$ T -> FT’ 
$E’T’id id + id * id$ F -> id 
$E’T’  + id * id$ 

… 
$ $ E’ -> ε 

26	


