Program Syntax

In Text: Chapter 3 & 4

Overview

- · Basic concepts
 - Programming language, regular expression, context-free grammars
- Lexical analysis
 - Scanner
- Syntactic analysis
 - Parser

What is a "Language"?

- A language is a set of <u>strings of symbols</u> that are constrained by rules
- A sentence is a string of symbols
- A language is a set of sentences

What is a "Language"?

- Syntax and semantics provide a language's definition
 - Syntax (Grammar)
 - To describe the structure of a language
 - Semantics
 - To describe the meaning or sentences, phrases, or words

Formal Definition of Languages

- Recognizers
 - A recognition device reads input strings over the alphabet of the language and decides whether the input strings belong to the language
 - Example: syntax analysis part of a compiler
- Generators
 - A device that generates sentences of a language

Natural Languages Are Ambiguous

- "I saw a man on a hill with a telescope"
- Programming languages should be precise and unambiguous
 - Both programmers and computers can tell what a program is supposed to do

Programming Language Definition

- Syntax
 - To describe what its programs look like
 - Specified using regular expressions and context-free grammars
- Semantics
 - To describe what its programs mean
 - Specified using axiomatic semantics, operational semantics, or denotational semantics

Regular Expressions

- A regular expression is one of the following:
 - A character
 - The empty string, denoted by ϵ
 - Two or more regular expressions concatenated
 - Two or more regular expressions separated by | (or)
 - A regular expression followed by the Kleene star (concatenation of zero or more strings)

Regular Expressions

 The pattern of numeric constants can be represented as:

9

What is the meaning of following expressions?

- [0-9a-f]+
- b[aeiou]+t
- a*(ba*ba*)*

10

Define Regular Expressions

- Match strings only consisting of 'a', 'b', or 'c' characters
- Match only the strings "Buy more milk", "Buy more bread", or "Buy more juice"
- Match identifiers which contain letters and digits, starting with a letter

11

Context-Free Grammars

- Context-Free Grammars
 - Developed by Noam Chomsky in the mid-1950s
 - Describe the syntax of natural languages
 - Define a class of languages called contextfree languages
 - Was originally designed for natural languages

Context-Free Grammars

- Using the notation Backus-Naur Form (BNF)
- · A context-free grammar consists of
 - A set of terminals T
 - A set of non-terminals N
 - A start symbol 5 (a non-terminal)
 - A set of productions P

13

Terminals T

- The basic symbols from which strings are formed
- Terminals are tokens
 - if, foo, ->, 'a'

14

Non-terminals N

- Syntactic variables that denote sets of strings or classes of syntactic structures

 expr, stmt
- Impose a hierarchical structure on the language

15

Start Symbol 5

- · One nonterminal
- Denote the language defined by the grammar

1

Production P

- Specify the manner in which terminals and nonterminals are combined to form strings
- Each production has the format nonterminal -> a string of nonterminals and terminals
- One nonterminal can be defined by a list of nonterminals and terminals

17

Production P

 Nonterminal symbols can have more than one distinct definition, representing all possible syntactic forms in the language

<if_stmt> -> if <logic_expr> then <stmt>
<if_stmt> -> if <logic_expr> then <stmt> else <stmt>
Or

<if_stmt> -> if <logic_expr> then <stmt> | if <logic_expr> then <stmt> else <stmt>

Backus-Naur Form

- Invented by John Backus and Peter Naur to describe syntax of Algol 58/60
- Used to describe the context-free grammars
- A meta-language: a language used to describe another language

BNF Rules

- A rule has a left-hand side(LHS), one or more right-hand side (RHS), and consists of terminal and nonterminal symbols
- For a nonterminal, when there is more than one RHS, there are multiple alternative ways to expand/replace the nonterminal
 - E.g., <stmt> -> <single_stmt> | begin <stmt_list> end

BNF Rules

• Rules can be defined using recursion

```
<ident list> -> ident
             | ident, <ident_list>
```

- Two types of recursion
 - Left recursion:
 - id_list_prefix -> id_list_prefix, id | id
 - Right recursion
 - The above example

How does BNF work?

- It is like a mathematical game:
 - You start with a symbol 5
 - You are given rules (Ps) describing how you can replace the symbol with other symbols (Ts or Ns)
 - The language defined by the BNF grammar is the set of all terminal strings (sentences) you can produce by following these rules

Derivation

- · A grammar is a generative device for defining languages
- · The sentences of the language are generated through a sequence of rule applications
- The sequence of rule applications is called a derivation

An Example Grammar

<stmts> -> <stmt> <stmt> ; <stmts> <stmt> -> <var> = <expr> <var> -> a | b | c | d <expr> <term> + <term> <term> - <term> <term> -> <var> const

An Exemplar Derivation

Sentential Forms

- Every string of symbols in the derivation is a sentential form
- A sentence is a sentential form that has only terminal symbols
- A leftmost derivation is one in which the leftmost non-terminal in each sentential form is the one that is expanded next in the derivation

Sentential Forms

- A left-sentential form is a sentential form that occurs in the leftmost derivation
- A rightmost derivation works right to left
- A right-sentential form is a sentential form that occurs in the rightmost derivation
- Some derivations are neither leftmost nor rightmost

Why BNF?

- Provides a clear and concise syntax description
- The parse tree can be generated from BNF
- Parsers can be based on BNF and are easy to maintain

Context-Free Grammars

 The syntax of simple arithmetic expression

- What are the terminal symbols and nonterminal symbols?
- · What is the start symbol?

One Possible Derivation

```
expr => expr op expr
=> ...
=> id + number
```

Parse Tree

- · A parse tree is
 - a hierarchical representation of a derivation
 - to represent the structure of the derivation of a terminal string from some non-terminal
 - to describe the hierarchical syntactic structure of programs for any language

An Example

Given the simple assignment statement syntax

With leftmost derivation, how is A = B * (A + C) generated?

Derivation for A = B * (A + C)

The Parse Tree for A = B * (A + C)

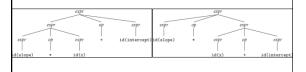
(assign)

(id) = (expr)

A (id) * (expr)

B (expr)

A (id)


C

C

Parse Tree

 A grammar is ambiguous if it generates a sentential form that has two or more distinct parse trees An Ambiguous Grammar

• Parse trees for "slope * x + intercept":

What goes wrong?

- The production rules do not capture the associativity and precedence of various operators
 - Associativity tells whether the operators group left to right or right to left
 Is 10 4 3 equal to (10 4) 3 or 10 (4 3)?
 - Precedence tells that some operators group more tightly than the others
 - Is slope * x + intercept equal to (slope * x) + intercept or slope * (x + intercept)?

Operator Associativity

Single recursion in production rules

```
<expr> -> <expr> - <expr> | const

X Ambiguous

<expr> -> <expr> - const | const

/ Unambiguous
```

<expr> -> const - <expr> | const

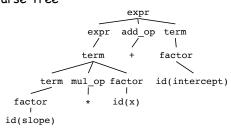
✓ Unambiguous (less desirable)

Operator Precedence

- Use stratification in production rules
 - Intentionally put operators at different levels of parse trees

```
<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const
```

39


Improved Unambiguous Context-Free Grammar

3. add_op -> + | -

4. mul_op -> * | /

Revisit "slope * x + intercept"

• Parse Tree

Extended BNF (EBNF)

- There are extensions of BNF to simplify representation
 - Kleene star * or {} to represent repetition (0 or more)
 - -() to represent alternative parts
 - -[] to represent optional partsproc_call -> id'('[expr_list]')'

BNF and EBNF

• BNF

• EBNF

```
\langle expr \rangle \rightarrow \langle term \rangle \{ (+ | -) \langle term \rangle \}
\langle term \rangle \rightarrow \langle factor \rangle \{ (* | /) \langle factor \rangle \}
```

Homework 2

• Due date: 12:30pm on 10/11