
8/28/18	

1	

The Design and Implementation
of Programming Languages

In Text: Chapter 1

Language Implementation Methods

•  Compilation
•  Interpretation
•  Hybrid

2	

Compilation

•  Translate high-level programs to
machine code

•  Slow translation
•  Fast execution

3	

Interpretation

•  Interpret one statement and then
execute it on a virtual machine

•  No translation
•  Slow execution
•  E.g., Basic

4	

Compilation vs. Interpretation

•  Compilation
– Better performance
•  No runtime cost for interpretation
•  Program optimization

•  Interpretation
– Better diagnosis (with excellent source-

level debugger)
– Earlier diagnosis (execute erroneous

program)

5	

Hybrid Implementation

•  Quick start in “Interpretation” mode
•  Compile code on hot paths to speed up
– E.g., Just-in-Time (JIT) compiler in Java

Virtual Machine (JVM)

6	

8/28/18	

2	

7	

Hybrid Implementation (Java) Implementation Strategies in
Practice

•  Preprocessing
•  Library routines and linking
•  Post-compilation assembly
•  Source-to-source translation
•  Bootstrapping

8	

Preprocessing (Basic)

•  An initial translator
– to remove comments and white spaces,
– to group characters together into tokens such as

keywords, identifiers, numbers, and symbols,
– to expand abbreviations in the style of a macro

assembler, and
– to identify higher-level syntactic structures,

such as loops and subroutines
•  Goal
– To provide an intermediate form that mirrors

the structure of the source, but can be
interpreted more efficiently

9	

Preprocessing (C)

•  Conditional compilation
– Delete portions of code to allow several

versions of a program to be built from the
same source

10	

Library routines and linking (Fortran)

•  The compilation of source code counts
on the existence of a library of
subroutines invoked by the program

11	

Post-compilation assembly (gcc)

•  Source code is first compiled to assembly
code, and then the assembler translates it
to machine code
– To facilitate debugging (assembly code is

easier to read)
– To isolate the compiler from changes in the

format of machine language files (only the
commonly shared assembler must be changed)

12	

8/28/18	

3	

Source-to-Source Translation

•  AT&T C++ compiler
– To translate C++ programs to C programs
– To facilitate reuse of compilers or language

support

13	

Bootstrapping

•  Many compilers are self-hosting:
– They are written in the language they

compile
– Bootstrapping is used to compile the

compiler in the first place

14	

Pascal->MC
compiler,
in Pascal

Pascal->P-code
compiler,
in P-code

Pascal->MC
compiler,
in P-code

P-code->MC
interpreter,

in MC

Pascal->MC
compiler,
in MC

15	

Pascal	 MC	

Pascal	 Pascal	 P-code	

P-code	

Pascal	 MC	

P-code	P-code	 MC	

MC	

Pascal	 MC	

MC	

Overview of Compilation

16	

Front end & back end

•  Front end
– To analyze the source code in order to build

an internal representation (IR) of the
program

– It includes: lexical analysis, syntactic
analysis, and semantic analysis

•  Back end
– To gather and analyze program information

from IR, to optimize the code, and to
generate machine code

– It includes: optimization and code generation
17	

Scanning (Lexical Analysis)

•  Break the program into “tokens”—the
smallest meaningful units
– This can save time, since character-by-

character processing is slow
•  We can tune the scanner better
– E.g., remove spaces & comments

•  A scanner uses a Deterministic Finite
Automaton (DFA) to recognize tokens

18	

8/28/18	

4	

A running example: Greatest Common
Divisor (GCD)

int main() {
 int i = getint(),
 j = getint();
 while (i != j) {
 if (i > j) i = i – j;
 else j = j – i;
 }
 putint(i);
}

19	

Token sequence:
int main () {
int i = getint
() , j =
getint () ; while
(i != j)
{ if (i >
j) i = i
- j ; else j
= j - i ;
} putint (i)
; }

Parsing

•  Organize tokens into a parse tree that
represents higher-level constructs
(statements, expressions, subroutines)
– Each construct is a node in the tree
– Each construct’s constituents are its

children

20	

GCD Parsing Tree

21	

Semantic Analysis

•  Determine the meaning of a program
•  A semantic analyzer builds and

maintains a symbol table data structure
that maps each identifier to the
information known about it, such as the
identifier’s type, internal structure, and
scope

22	

Semantic Analysis

•  With the symbol table, the semantic
analyzer can enforce a large variety of
rules to check for errors

•  Sample rules:
– Each identifier is declared before it is used
– Any function with a non-void return type

returns a value explicitly
– Subroutine calls provide the correct

number and types of arguments

23	

Semantic Analysis

•  Static semantics
– Rules that can be checked at compile time

•  Dynamic semantics
– Rules that must be checked at run time,

such as
•  Variables should never be used in an expression

unless they have been given a value
•  Pointers should never be dereferenced unless

they refer to a valid object

24	

8/28/18	

5	

Syntax Tree

•  A parse tree is known as a concrete
syntax tree
– It demonstrates concretely, how a

particular sequence of tokens can be
derived under the rule of the context-free
grammar

•  However, much of the information in a
concrete syntax tree is irrelevant
– E.g., ε under some branches

25	

Syntax Tree

•  In the process of checking static
semantic rules, a semantic analyzer
transforms the parse tree into an
abstract syntax tree (AST, or syntax
tree) by
– removing “unimportant” nodes, and
– annotating remaining nodes with

information like pointers from identifiers
to their symbol table entries

26	

GCD Abstract Syntax Tree

27	

Intermediate Form (IF)

•  Generated after semantic analysis
– In many compilers, an AST is passed as IF

from the front end to the back end
– In other compilers, a control flow graph is

passed as IF

28	

Optimization [1]

•  High-level optimization
– Goal: perform high-level analysis and

optimization of programs
– Input: AST + symbol table
– Output: low-level program representation,

such as 3-address code(TAC)
– Tasks:
•  Procedure/method inlining
•  Array/pointer dependence analysis
•  Loop transformations: unrolling, permutation, …

29	

Optimization [1]

•  Low-level optimization
– Goal: perform low-level analysis and optimizations
– Input: low-level representation of programs, such

as 3-address code
– Output: optimized low-level representation, and

additional information, such as def-use chains
– Tasks:
•  Dataflow analysis: live variables, reaching definitions,

…
•  Scalar optimizations: constant propagation, partial

redundancy elimination, …
30	

8/28/18	

6	

Code Generator [1]

•  Goal: produce assembly/machine code
from optimized low-level representation
of programs

•  Tasks:
– Register allocation
– Instruction selection

31	

Reference

[1] Keshav Pingali, Advanced Topics in
Compilers, https://www.cs.utexas.edu/
~pingali/CS380C/2013/lectures/intro.pdf

32	

