
8/23/18	

1	

The Evolution of Programming
Languages

In Text: Chapter 2

Programming
Language
Genealogy

2	

Zuse’s Plankalkül

•  Designed in 1945, but not published until
1972

•  Never implemented
•  Advanced data structures
– floating point, arrays, records

•  Invariants

3	

Plankalkül Syntax

•  An assignment statement to assign the
expression A[4] + 1 to A[5]

 | A + 1 => A
 V | 4 5 (subscripts)
 S | 1.n 1.n (data types)

4	

Minimal Hardware Programming:
Pseudocodes

•  Pseudocodes were developed and used in
the late 1940s and early 1950s

•  What was wrong with using machine
code?
– Poor readability
– Poor modifiability
– Expression coding was tedious
– Machine deficiencies--no indexing or

floating point

5	

Machine Code

•  Any binary instruction which the
computer’s CPU will read and execute
– e.g., 10001000 01010111 11000101 11110001

10100001 00010101
•  Each instruction performs a very

specific task, such as loading a value
into a register, or adding two binary
numbers together

6	

8/23/18	

2	

Short Code: The First Pseudocode

•  Short Code developed by Mauchly in
1949 for BINAC computers
– Expressions were coded, left to right
– Example of operations:

 01 – 06 abs value 1n (n+2)nd power
 02) 07 + 2n (n+2)nd root

 03 = 08 pause 4n if <= n

 04 / 09 (58 print and tab

7	

•  Variables were named with byte-pair
codes
– E.g., X0 = SQRT(ABS(Y0))
– 00 X0 03 20 06 Y0
– 00 was used as padding to fill the word

8	

IBM 704 and Fortran

•  Fortran 0: 1954 - not implemented
•  Fortran I: 1957
– Designed for the new IBM 704, which had

index registers and floating point hardware
•  This led to the idea of compiled programming

languages, because there was no place to hide the
cost of interpretation (no floating-point software)

– Includes
•  Formatted I/O, variable names of up to six

characters, user-defined subroutines, three-way
selection statement (arithmetic IF), do-loop

9	

IBM 704 and Fortran (Continued)

– Environment of development
•  Computers were small and unreliable
•  Applications were scientific
•  No programming methodology or tools
•  Machine efficiency was the most important

concern

10	

IBM 704 and Fortran (Continued)

– Limitations
•  No separate compilation

– Subroutines could not be separately compiled
•  No data typing statements

–  Variables whose names began with I, J, K, L, M, and N
were implicitly integer type, and all others were
implicitly floating-point.

•  Programs larger than 400 lines rarely compiled
correctly, mainly due to poor reliability of 704

11	

Fortran

•  Fortran II: 1958
– Independent compilation
– Fixed the bugs

•  Fortran IV: 1960-62 (Fortran 66)
– Explicit type declarations
– Logical if-construct
– The capability of passing subprograms as

parameters

12	

8/23/18	

3	

Fortran

•  Fortran 77: 1978
– Character string handling
– Logical loop control statement
– IF-THEN-ELSE statement

•  Fortran 90
– Modules, dynamic arrays, pointers,

recursion, CASE statement, parameter type
checking

13	

Fortran

•  Fortran 95
– relatively minor additions, plus some

deletions
•  Fortran 2003
– support for OOP, procedure pointers,

interoperability with C
•  Fortran 2008
– blocks for local scopes, co-arrays, Do

Concurrent

14	

Fortran Evaluation

•  Highly optimizing compilers (all versions
before 90)

•  Types and storage of all variables are
fixed before runtime

•  Dramatically changed forever the way
computers are used

15	

The First Step Towards
Sophistication: ALGOL 60

•  Environment of development
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all

for specific machines
– No portable language; all were machine-

dependent
– No universal language for communicating

algorithms
•  ALGOL 60 was the result of efforts to

design a universal language

16	

Early Design Process

•  ACM and GAMM met for four days for
design (May 27 to June 1, 1958)

•  Goals of the language
– Close to mathematical notation
– Good for describing algorithms
– Must be translatable to machine code

17	

ALGOL 58
•  Concept of type was formalized
•  Names could be any length
•  Arrays could have any number of subscripts
•  Parameters were separated by mode (in & out)
•  Subscripts were placed in brackets
•  Compound statements (begin ... end)
•  Semicolon as a statement separator
•  Assignment operator was :=
•  if had an else-if clause
•  No I/O - “would make it machine dependent”

18	

8/23/18	

4	

ALGOL 58 Implementation

•  Not meant to be implemented, but
variations of it were (MAD, JOVIAL)

•  Although IBM was initially enthusiastic,
all support was dropped by mid 1959

19	

ALGOL 60 Overview

•  Modified ALGOL 58 at 6-day meeting in
Paris

•  New features
– Block structure (local scope)
– Two parameter passing methods
– Subprogram recursion
– Stack-dynamic arrays
– Still no I/O and no string handling

20	

ALGOL 60 Evaluation

•  Successes
– It was the standard way to publish

algorithms for over 20 years
– All subsequent imperative languages are

based on it
– First machine-independent language
– First language whose syntax was formally

defined (BNF)

21	

ALGOL 60 Evaluation (continued)

•  Failure
– Never widely used, especially in U.S.

•  Reasons
– Lack of I/O and the character set made

programs non-portable
– Too flexible--hard to implement
– Entrenchment of Fortran
– Formal syntax description
– Lack of support from IBM

22	

ALGOL 68
•  From the continued development of

ALGOL 60 but not a superset of that
language

•  Source of several new ideas (even though
the language itself never achieved
widespread use)

•  Design is based on the concept of
orthogonality
– A few basic concepts, plus a few combining

mechanisms
23	

ALGOL 68 Evaluation

•  Contributions
– User-defined data structures
– Reference types
– Dynamic arrays (called flex arrays)

•  Comments
– Less usage than ALGOL 60
– Had strong influence on subsequent

languages, especially Pascal, C, and Ada

24	

8/23/18	

5	

Pascal - 1971

•  Developed by Wirth (a former member of
the ALGOL 68 committee)

•  Designed for teaching structured
programming

•  Small, simple, nothing really new
•  Largest impact was on teaching

programming
– From mid-1970s until the late 1990s, it was

the most widely used language for teaching
programming

25	

C - 1972

•  Designed for system programming (at Bell
Labs by Dennis Richie)

•  Evolved primarily from BCLP and B, but
also ALGOL 68

•  Powerful set of operators, but poor type
checking

•  Initially spread through UNIX
•  Though designed as a system language, it

has been used in many application areas

26	

History’s Largest Design Effort: Ada

•  Huge design effort, involving hundreds of
people, much money, and about eight years

•  Sequence of requirements document for the
new language (1975-1978)
– (Strawman, Woodenman, Tinman, Ironman,

Steelman)
– Four finalist language design proposals were

chosen, all of which were based on Pascal
– The Cii Honeywell/Bull language design proposal

was selected
27	

Ada Evaluation

•  Named Ada after Augusta Ada Byron,
the first programmer

•  Contributions
– Packages - support for data abstraction
– Exception handling
– Generic program units
– Concurrency - through the tasking model

28	

Ada Evaluation

•  Comments
– Competitive design
– Included all that was then known about

software engineering and language design
– First compilers were very difficult; the

first really usable compiler came nearly five
years after the language design was
completed

29	

•  Ada 95 (began in 1988)
– Support for OOP through type derivation
– Better control mechanisms for shared data
– New concurrency features
– More flexible libraries

•  Ada 2005
– Interfaces and synchronizing interfaces

30	

8/23/18	

6	

Ada

•  Popularity suffered because the DoD no
longer requires its use but also because
of popularity of C++

31	

Object-Oriented Programming: Smalltalk

•  Developed at Xerox PARC, initially by
Alan Kay, later by Adele Goldberg

•  First full implementation of an object-
oriented language (data abstraction,
inheritance, and dynamic binding)

•  Pioneered the graphical user interface
design

•  Promoted OOP

32	

Combining Imperative and Object-
Oriented Programming: C++

•  Developed at Bell Labs by Stroustrup in
1980

•  Evolved from C and SIMULA 67
•  Facilities for object-oriented

programming, taken partially from
SIMULA 67

•  A large and complex language, in part
because it supports both procedural and
OO programming

33	

C++

•  Rapidly grew in popularity, along with
OOP

•  ANSI standard approved in November
1997

•  Microsoft’s version: MC++
– Properties, delegates, interfaces, no

multiple inheritance

34	

A Related OOP Language

•  Objective-C (designed by Brad Cox –
early 1980s)
– C plus support for OOP based on Smalltalk
– Uses Smalltalk’s method calling syntax
– Used by Apple for system programs

35	

An Imperative-Based Object-
Oriented Language: Java

•  Developed at Sun in the early 1990s
– C and C++ were not satisfactory for

embedded electronic devices
•  Based on C++
– Significantly simplified (does not include

struct, union, enum, pointer arithmetic, and
half of the assignment coercions of C++)

– Supports only OOP
– Has references, but not pointers
– Includes support for applets and a form of

concurrency
36	

8/23/18	

7	

Java Evaluation
•  Eliminated many unsafe features of C++
•  Supports concurrency
•  Libraries for applets, GUIs, database

access
•  Portable: Java Virtual Machine concept,

JIT compilers
•  Widely used for Web programming
•  Use increased faster than any previous

language
•  Most recent version, 9, released in 2018

37	

Scripting Languages for the Web

•  Perl
– Designed by Larry Wall—first released in 1987
– Variables are statically typed but implicitly

declared
– Three distinctive namespaces, denoted by the

first character of a variable’s name
–  Powerful, but somewhat dangerous
– Gained widespread use for CGI programming on

the Web
– Also used for a replacement for UNIX system

administration language

38	

Scripting Languages for the Web
(Cont’d)

•  JavaScript
– Began at Netscape, but later became a

joint venture of Netscape and Sun
Microsystems

– A client-side HTML-embedded scripting
language, often used to dynamically create
and modify HTML documents

– Purely interpreted
– Related to Java only through similar syntax

39	

Scripting Languages for the Web
(Cont’d)

•  PHP
– PHP: Hypertext Preprocessor, designed by

Rasmus Lerdorf
– A server-side HTML-embedded scripting

language, often used for form processing
and database access through the Web

– Purely interpreted

40	

Scripting Languages for the Web
(Cont’d)

•  Python
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form

processing
– Supports lists, tuples, and hashes

41	

Scripting Languages for the Web

•  Lua
– An OO interpreted scripting language
– Type checked but dynamically typed
– Used for CGI programming and form

processing
– Supports lists, tuples, and hashes, all with

its single data structure—the table
– Easily extendable

42	

8/23/18	

8	

Scripting Languages for the Web

•  Ruby
– Designed in Japan by Yukihiro Matsumoto

(a.k.a, “Matz”)
– Began as a replacement for Perl and Python
– A pure object-oriented scripting language
•  All data are objects

– Most operators are implemented as methods,
which can be redefined by user code

– Purely interpreted

43	

The Flagship .NET Language: C#

•  Part of the .NET development platform
(2000)

•  Based on C++ , Java, and Delphi
•  Includes pointers, delegates,

properties, enumeration types, a limited
kind of dynamic typing, and anonymous
types

•  Is evolving rapidly

44	

Functional Programming: Lisp

•  LISt Processing language
– Designed at MIT by McCarthy

•  AI research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than

numeric)
•  Only two data types: atoms and lists
•  Syntax is based on lambda calculus

45	

Representation of Two Lisp Lists

46	

Representing the lists (A B C D)
and (A (B C) D (E (F G)))

(A B C D)

Lisp Evaluation

•  Pioneered functional programming
– No need for variables or assignments
– Control via recursion and conditional expressions

•  Still the dominant language for AI
•  Common Lisp and Scheme are contemporary

dialects of Lisp
•  ML, Haskell, and F# are also functional

programming languages, but use very
different syntax

47	

Scheme

•  Developed at MIT in mid 1970s
•  Small
•  Extensive use of static scoping
•  Functions as first-class entities
•  Simple syntax and small size make it

ideal for educational applications

48	

8/23/18	

9	

Common Lisp

•  An effort to combine features of
several dialects of Lisp into a single
language

•  Large, complex, used in industry for
some large applications

49	

Programming Based on Logic: Prolog
•  Developed by Comerauer and Roussel

(University of Aix-Marseille), with help
from Kowalski (University of Edinburgh)

•  Based on formal logic
•  Non-procedural
•  Can be summarized as being an intelligent

database system that uses an inference
process to infer the truth of given queries

•  Comparatively inefficient
•  Few application areas

50	

Markup/Programming Hybrid
Languages

•  XSLT
– eXtensible Markup Language (XML): a

metamarkup language
– eXtensible Stylesheet Language

Transformation (XSLT) transforms XML
documents for display

– Programming constructs (e.g., looping)

51	

Markup/Programming Hybrid
Languages

•  JSP
– Java Server Pages: a collection of

technologies to support dynamic Web
documents

– JSTL, a JSP library, includes programming
constructs in the form of HTML elements

52	

Computerizing Business Records: COBOL
•  COBOL design process
– First Design Meeting (Pentagon) - May 1959
– Design goals
•  Must look like simple English
•  Must be easy to use, even if that means it will be less

powerful
•  Must broaden the base of computer users
•  Must not be biased by current compiler problems

– Design committee members were all from
computer manufacturers and DoD branches

– Design Problems: arithmetic expressions?
subscripts? Fights among manufacturers

53	

COBOL Evaluation

•  Contributions
– First macro facility in a high-level language

(DEFINE verb)
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with

hyphens
– Separate data division

54	

8/23/18	

10	

COBOL: DoD Influence

•  First language required by DoD
– would have failed without DoD

•  Still the most widely used business
applications language

55	

The Beginning of Timesharing: Basic

•  Designed by Kemeny & Kurtz at Dartmouth
•  Design Goals:
– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time

•  Current popular dialect: Visual Basic
•  First widely used language with time sharing

56	

Everything for Everybody: PL/I

•  Designed by IBM and SHARE
•  Computing situation in 1964 (IBM's point

of view)
– Scientific computing

•  IBM 1620 and 7090 computers
•  FORTRAN
•  SHARE user group

– Business computing
•  IBM 1401, 7080 computers
•  COBOL
•  GUIDE user group

57	

PL/I: Background

•  By 1963
– Scientific users began to used floating-

point data and arrays extensively; business
users began to need more elaborate I/O

– It looked like many shops would begin to
need two kinds of computers, languages,
and support staff--too costly

58	

PL/I: Background

•  The obvious solution
– Build a new computer to do both kinds of

applications
– Design a new language to do both kinds of

applications

59	

PL/I: Design Process

•  Designed in five months by the 3 X 3
Committee
– Three members from IBM, three members

from SHARE
•  Initial concept
– An extension of Fortran IV

•  Initially called NPL (New Programming
Language)

•  Name changed to PL/I in 1965

60	

8/23/18	

11	

PL/I: Evaluation

•  PL/I contributions
– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type
– First array cross sections

•  Concerns
– Many new features were poorly designed
– Too large and too complex

61	

