
Overloaded Operators

• The multiple use of an operator is called

operator overloading

– E.g., “+” is used to specify integer addition,

floating-point addition, and string catenation

• Do not use the same symbol for two

completely unrelated operations, because

that can decrease readability

– In C, “&” can represent a bitwise AND operator,

and an address-of operator

1

Type Conversion

• Narrowing conversion

– To convert a value to a type that cannot store

all values of the original type

– E.g. (Java), double->float, float->int

• Widening conversion

– To convert a value to a type that can include

all values belong to the original type

– E.g., int->float, float->double

2

Narrowing Conversion vs. Widening

Conversion

• Narrowing conversion are not always safe

– The magnitude of the converted value can be
changed

– E.g., float->int with 1.3E25, the converted value
is distantly related to the original one

• Widening conversion is always safe

– However, some precision may be lost

– E.g., int->float, integers have at least 9 decimal
digits of precision, while floats have 7 decimal
digits of precision (reduced accuracy)

3

Implicit Type Conversion

• One of the design decisions concerning arithmetic
expressions is whether an operator can have
operands of different types.

• Languages that allow such expressions, which are
called mixed-mode expressions, must define
conventions for implicit operand type conversions
because computers do not have binary operations
that take operands of different types.

• A coercion is an implicit type conversion that is
initiated by the compiler

4

Implicit Type Conversion

• Implicit type conversion can be achieved by

narrowing or widening one or more operators

• It is better to widen when possible

– E.g., x = 3, z = 5.9, what is y’s value if x is

widened? How about z narrowed?

5

var x, y: integer;
z: real;
...

y := x * z; /* x is automatically converted to “real” */

Key Points of Implicit Coercions

• They decrease the type error detection

ability of compilers

– Did you really mean to use “mixed-mode

expressions” ?

• In most languages, all numeric types are

coerced in expressions, using widening

conversions

6

Explicit Type Conversion

• Also called “casts”

• Ada example

FLOAT(INDEX)-- INDEX is an INTEGER

• C example:

(int) speed /* speed is a float */

7

Short-Circuit Evaluation

• A short-circuit evaluation of an expression is

one in which the result is determined without

evaluating all of the operands and/or operators

– Consider (a < b) && (b < c):

• If a >= b, there is no point evaluating b < c because

(a < b) && (b < c) is automatically false

• (x && y) if x then y else false

• (x || y) if x then true else y

8

Short-Circuit Evaluation

• Short-circuit evaluation may lead to

unexpected side effects and cause error

– E.g., (a > b) || ((b++) / 3)

• C, C++, and Java:

– Use short-circuit evaluation for Boolean

operations (&& and ||)

– Also provide bitwise operators that are not

short circuit (& and |)

9

Short-Circuit Evaluation

• Ada: programmers can specify either

Non-SC eval SC eval

(x or y) (x or else y)

(x and y) (x and then y)

10

Control Structures

• Selection

• Iteration

– Iterators

• Recursion

• Concurrency & non-determinism

– Guarded commands

11

Structured and Unstructured Flow

• Assembly language: conditional and unconditional branches.

• Early Fortran: relied heavily on goto statements (and labels):
IF (A .LT. B) GOTO 10 ! “.LT.” means “<“
…

10

• Late 1960s: Abandoning of GOTO statements started.

• Move to structured programming in 1970s:
– Top-down design (progressive refinement).

– Modularization of code.

– Descriptive variable.

• Within a subroutine, a well-designed imperative algorithm can
be expressed with only sequencing, selection, and iteration.

• Most of the structured control-flow constructs were introduced
by Algol 60.

38

Structured Alternatives to goto

• With the structured constructs available, there was a small
number of special cases where goto was replaced by special
constructs: return, break, continue.

• Multilevel returns: branching outside the current subroutine.
– Unwinding: the repair operation that restores the run-time stack

of subroutine information, including the restoration of register
contents.

• Errors and other exceptions within nested subroutines:
– Auxiliary Boolean variable.

– Nonlocal GOTOs.

– Multilevel returns.

– Exception handling.

39

Sequencing

• The principal means of controlling the order in which
side effects occur.

• Compound statement: a delimited list of statements.

• Block: a compound statement optionally preceded by
a set of declarations.

• The value of a list of statements:
– The value of its final element (Algol 68).

– Programmers choice (Common Lisp – not purely
functional).

• Can have side effects; very imperative, von Neumann.

• There are situations where side effects in functions are
desirable: random number generators.

40

Selection

• Selection statement: mostly some variant of if…then…else.

• Languages differ in the details of the syntax.

• Short-circuited conditions:
– The Boolean expression is not used to compute a value but to

cause control to branch to various locations.

– Provides a way to generate efficient (jump) code.

– Parse tree: inherited attributes of the root inform it of the address
to which control should branch:
if ((A > B) and (C > D)) or (E ≠ F) then r1 := A r2 := B
then_clause if r1 <= r2 goto L4

else r1 := C r2 := D
else_clause if r1 > r2 goto L1

L4: r1 := E r2 := F
if r1 = r2 goto L2

L1: then_clause
goto L3

L2: else_clause
L3:

41

Case/Switch Statements

• Alternative syntax for a special case of nested if..then..else.
CASE … (* expression *)

1: clause_A
| 2, 7: clause_B
| 3..5: clause_C
| 10: clause_D

ELSE clause_E
END

• Multiple selectors

• Code fragments (clauses): the arms of the CASE statement.

• The list of constants are CASE statement labels:
– The constants must be disjoint.

– The constants must of a type compatible with the tested
expression.

• The principal motivation is to facilitate the generation of
efficient target code: meant to compute the address in which
to jump in a single instruction.
– A jump table: a table of addresses.

42

Case/Switch Statements

17

switch (index) {

case 1:

case 3: odd += 1;
sumodd += index;

break;

case 2:

case 4: even += 1;
sumeven += index;

break;

default: printf("Error in switch,
index = %d\n", index);

}

Iteration

• Iteration: a mechanism that allows a computer to perform
similar operations repeatedly.

• Favored in imperative languages.

• Mostly some form of loops executed for their side effects:
• Enumeration-controlled loops: executed once of every value in a

given finite set.

• Logically controlled loops: executed until some Boolean
condition changes value.

• Combination loops: combines the properties of enumeration-
controlled and logically controlled loops (Algol 60).

• Iterators: executed over the elements of a well-defined set (often
called containers or collections in object-oriented code).

44

Design Issues

• What are the type and scope of the loop variable?

• Should it be legal for the loop variable or loop parameters to

be changed in the loop, and if so, does the change affect loop

control?

• Should the loop parameters be evaluated only once, or once

for every iteration?

19

Enumeration-Controlled Loops

• Originated with the DO loop in Fortran I.

• Adopted in almost every language but with varying syntax and
semantics.

• Many modern languages allow iteration over much more
general finite sets.

• Semantic complications:
1. Can control enter or leave the loop in any way other than through

the enumeration mechanism?

2. What happens if the loop body modifies variables that were used
to compute the end-of-loop bound?

3. What happens if the loop body modifies the index variable itself?

4. Can the program read the index variable after the loop has
completed, and if so, what will its value be?

• Solution: the loop header contains a declaration of the index.

46

Combination Loops

• Algol 60: can specify an arbitrary number of “enumerators” – a
single value, a range of values, or an expression.

• Common Lisp: four separate sets of clauses – initialize index
variables, test for loop termination, evaluate body
expressions, and cleanup at loop termination.

• C: semantically, for loop is logically controlled but makes
enumeration easy - it is the programmer’s responsibility to
test the terminating condition.
– The index and any variables in the terminating condition can be

modified within the loop.

– All the code affecting the flow of control is localized within the
header.

– The index can be made local by declaring it within the loop thus
it is not visible outside the loop.

47

Iteration Based on Data Structures

• A data-based iteration statement uses a
user-defined data structure and a user-
defined function to go through the
structure’s elements

– The function is called an iterator

– The iterator is invoked at the beginning of
each iteration

– Each time it is invoked, an element from the
data structure is returned

– Elements are returned in a particular order

22

Iterators

• True iterators: a container abstraction provides an iterator that
enumerates its items (Clu, Python, Ruby, C#).
– An iterator is a separate thread of control, with its own program

counter, whose execution is interleaved with that of the loop.
for i in range(first, last, step):

• Iterator objects: iteration involves both a special from of a for
loop and a mechanisms to enumerate the values for the loop:
– Java: an object that supports Iterable interface – includes an
iterator() method that returns an Iterator object.
for (iterator<Integer> it = myTree.iterator(); it.hasNext();) {
Integer i = it.next();
System.out.println(i);

}

– C++: overloading operators so that iterating over the elements is
like using pointer arithmetic.

49

Logically Controlled Loops

• The only issue: where within the body of the loop the

termination condition is tested.

• Before each iteration: the familiar while loop syntax – using

an explicit concluding keyword or bracket the body with

delimiters.

• Post-test loops: test the terminating condition at the bottom of
a loop – the body is always executed at least once. (do

while)

• Midtest loops: often accomplished with a special statement
nested inside a conditional – break (C), exit (Ada), or last

(Perl).

50

Recursion
• Recursion requires no special syntax: why?

• Recursion and iteration are equally powerful.

• Most languages provide both iteration (more
“imperative”) and recursion (more “functional”).

• Tail-recursive function: additional computation
never follows a recursive call. The compiler can
reuse the space, i.e., no need for dynamic
allocation of stack space.
int gcd(int a, int b) {
if (a == b) return a;
else if (a > b) return gcd(a - b,b);
else return gcd(a, b – a);

}

25

Guarded Commands

• New and quite different forms of selection

and loop structures were suggested by

Dijkstra (1975)

• We cover guarded commands because

they are the basis for two linguistic

mechanisms developed later for

concurrent programming in two languages:

CSP and Ada

26

Motivations of Guarded Commands

• To support a program design methodology

that ensures correctness during

development rather than relying on

verification or testing of completed

programs afterwards

• Also useful for concurrency

• Increased clarity in reasoning

27

Guarded Commands

• Two guarded forms

– Selection (guarded if)

– Iteration (guarded do)

28

Guarded Selection

• Sementics

– When this construct is reached

• Evaluate all boolean expressions

• If more than one is true, choose one nondeterministically

• If none is true, it is a runtime error

• Idea: Forces one to consider all possibilities

29

if <boolean> -> <statement>

[] <boolean> -> <statement>

...

[] <boolean> -> <statement>

fi

An Example

• If i = 0 and j > i, the construct chooses

nondeterministically between the first and

the third assignment statements

• If i == j and i ≠ 0, none of the conditions is

true and a runtime error occurs

30

if i = 0 -> sum := sum + i

[] i > j -> sum := sum + j

[] j > i -> sum := sum + i

fi

Guarded Selection

• The construction can be an elegant way to

state that the order of execution, in some

cases, is irrelevant

– E.g., if x == y, it does not matter which we

assign to max

– This is a form of abstraction provided by the

nondeterministic semantics

31

if x >= y -> max := x

[] y >= x -> max := y

fi

Guarded Selection

32

if (x >= y)
max = x;

else
max = y;

This could also be coded as follows:
if (x > y)
max = x;

else
max = y;

Now, consider this same process coded in a traditional programming

language

selector:

Guarded Iteration

• Semantics:

– For each iteration

• Evaluate all boolean expressions

• If more than one is true, choose one nondeterministically,

and then start loop again

• If none is true, exit the loop

• Idea: if the order of evaluation is not important,

the program should not specify one

33

do <boolean> -> <statement>

[] <boolean> -> <statement>

...

[] <boolean> -> <statement>

od

An Example

• Given four integer variables: q1, q2, q3,
and q4, rearrange the values so that
q1 ≤ q2 ≤ q3 ≤ q4

• Without guarded iteration, one solution is to
put the values into an array, sort the array,
and then assigns the value back to the four
variables

34

do q1 > q2 -> temp := q1; q1 := q2; q2 := temp;

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp;

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp;

od

An Example

• While the solution with guarded iteration is

not difficult, it requires a good deal of code

• There is considerably increased

complexity in the implementation of the

guarded commands over their

conventional deterministic counterparts

35

