Subprograms

In Text: Chapter 9

11/29/17

Parameters that are subroutines

* In some situations, subroutine names
can be sent as parameters to other
subroutines

* Only the transmission of computation is
necessary, which could be done by
passing a functional pointer

Two complications with subroutine
parameters

*+ Are parameters type checked?

— Early Pascal and FORTRAN 77 do not type
check

— Later versions of Pascal, Modula-2, and
FORTRAN 90 do

—Cand C++ do

Two complications with subroutine
parameters (cont'd)

* What referencing environment should be
used for executing the passed subroutine?
— The environment of the call statement that

enacts the passed subroutine(shallow binding)
— The environment of the definition of the
subroutine(deep binding)
— The environment of the call statement that

passed it as an actual parameter(ad hoc
binding)

An Example

function sub1() {
var x;
function sub2() {
alert (x);

+ For shallow binding, the
Y referencing environment
function sub3() { of sub2 is sub4

var x;

x=3; * For deep binding, the

SpebE) referencing environment
function sub4(subx){ of sub2 is subl
var X;
§=b4(:) * For ad hoc binding, the
ubx(): . .
¥ referencing environment
B30 of sub2 is sub3

What is the output of alert(x)?

* Shallow binding?
+ Deep binding?

* Ad hoc binding?

Referencing Environment for
Subroutine Parameters
+ Deep binding and ad hoc binding can be

the same when a subroutine is declared
and passed by the same subroutine

+ In reality, ad hoc binding has never been
used

+ Static-scoped languages usually use deep
binding

+ Dynamic-scoped languages usually use
shallow binding

11/29/17

An Example
function Sent() { * In sTa‘ric-5coped
. print(x): languages, Receiver is not
f'uncﬂon Receiver(func) { GIWGYS .VIS!bIe. to Sent, so
var x; deep binding is natural
x=2;

+ In dynamic-scoped

¥ e
languages, it is natural for

function Sender() {

rar Sent to have access to
x=1 . . .
Receiver(Sent) var'lables.m Recgnver‘, so
¥ shallow binding is

appropriate

Design Issues for Functions

* Are side effects allowed?
— Ada requires in-mode parameters, and does
not allow any side effect
— Most languages support two-way
parameters, and thus allow functions to
cause side effects

Design Issues for Functions

* What types of values can be returned?
— FORTRAN, Pascal, and Modula-2: only
simple types
—C: any type except functions and arrays
— Ada: any type (but subroutines are not
types)
— JavaScript: functions can be returned

—Python, Ruby and functional languages:
methods are objects that can be treated as
any other object

Overloaded Subroutine

* A subroutine that has the same name as
another subroutine in the same
referencing environment, but its number,
order, or types of parameters must be
different
—E.g., void fun(float);

void fun();

» C++ and Ada have overloaded subroutines
built-in, and users can write their own
overloaded subroutines

Generic Subroutine

* A generic or polymorphic subroutine takes
parameters of different types on different
activations

*+ An example in C++

template<class Type>

Type max(Type first, Type second) {
return first > second ? first: second;

}

int a, b, c;

char d, e, £f;

c = max(a, b);
f = max(d, e);

11/29/17

Generic Subroutine

* Overloaded subroutines provide a
particular kind of polymorphism called ad
hoc polymorphism
— Overloaded subroutines need not behave

similarly

+ Parametric polymorphism is provided by a
subroutine that takes generic parameters
to describe the types of parameters

* Parametric polymorphic subroutines are
often called generic subroutines

Coroutine

* A special kind of subroutine. Rather
than the master-slave relationship, the
caller and callee coroutines are on a

more equal basis

* A coroutine is a subroutine that has
multiple entry points, which are
controlled by coroutines themselves

Coroutine

* The first execution of a coroutine begins
at its beginning, but all subsequent
executions often begin at points other
than the beginning

* Therefore, the invocation of a coroutine
is named a resume

Typically, coroutines repeatedly resume
each other, possibly forever

» Their executions interleave, but do not
overlap

Coroutine

* The interleaved execution sequence is
related to the way multiprogramming
operating systems work
— Although there may be one processor, all of
the executing programs in such a system
appear to run concurrently while sharing
the processor

— This is called quasi-concurrency

+ Coroutines provide quasi-concurrent
execution of program units

sub col() {
An Example resume(co2);
» The first time col is resumed, its| resume(co3);

execution begins at the first
statement, and executes down to
resume(co2) (with the statement
included)

The next time col is resumed, its
execution begins at the first
statement after resume(co?2)
The third time col is resumed,
its execution begins at the first
statement after resume(co3)

