FP Foundations, Scheme

In Text: Chapter 15

Outline

• Mathematical foundations
• Functional programming
• λ-calculus
• LISP
• Scheme

Imperative Languages

• We have been discussing imperative languages
 – C/C++, Java, and Pascal are imperative languages
 – They follow the von Neumann architecture [1]

Functional Programming

• A different way of looking at things
 – It is based on mathematical functions
 – It is supported by functional, and applicative, programming languages
 • LISP, ML, Haskell

Mathematical Foundations

• A mathematical function is a mapping of members from one set to another set
 – The "input" set is called the domain
 – The "output" set is called the range

Mathematical Foundations

• The evaluation order of mapping expressions is controlled by recursion and conditional expressions, rather than by the sequencing and iterative repetition
• Functions do not have states
 – They have no side effects
 – They always produce the same output given the same input parameters
Simple Functions

• Usual form:
 function name + a list of parameters in parentheses + mapping expression

 E.g., cube(x) = x * x * x, where
 - both the domain and range sets are real numbers, and
 - x can represent any member of the domain set, but it is fixed to represent one specific element during the expression evaluation

Function Application

• It is specified by paring the function name with a particular element of the domain set
• The range element is obtained by evaluating the function-mapping expression with the domain element substituted for the particular element
 - Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

Functional Forms

• A higher-order function, or functional form, is one that either takes functions as parameters, or yields a function as its result, or both
• Two common functional forms
 – Function composition
 – Apply-to-all

Function Composition

• Function composition has two functional parameters and yields a function whose value is the first function applied to the result of the second
• It is written as an expression, using a \(\circ \) operator (called "circle" or "round")
 - E.g., \(h = f \circ g \)
 if \(f(x) = x + 2 \), and
 \(g(x) = 3 \times x \)
 then \(h(x) = f(g(x)) = (3 \times x) + 2 \)

Apply-to-all

• Apply-to-all takes a single function as a parameter
• If applied to a list of arguments, apply-to-all applies its functional parameter to each element of the list, and then collects results in a list or sequence
• It is denoted by \(\alpha \)
 - E.g., \(h(x) = x \times x \times x \), then
 \(\alpha(h, (2, 3, 4)) = (4, 9, 16) \)

Lambda expression

• Early theoretical work on functions separated the task of defining a function from that of naming the function
• Lambda notation, \(\lambda \), provides a method for defining nameless functions
• A lambda expression is a function, which specifies the parameters, and the mapping expression
 - E.g., \(\lambda(x) \times x \times x \times x \)
Lambda-Calculus

• In the mid 1960s, Peter Landin observed that a complex programming language can be understood by formulating it as a tiny core calculus capturing the language's essential mechanisms, together with a collection of convenient derived forms whose behavior is understood by translating them into the core.

factorial Example

• factorial(n) =
 if n = 0 then 1 else n * factorial(n - 1)
• The corresponding λ-calculus term is:
 factorial(n) =
 \(\lambda n. \text{if } n=0 \text{ then } 1 \text{ else } n * \text{factorial} (n - 1) \)
• Meaning
 – For each nonnegative number n, instantiating the function with the argument n yields the factorial of n as a result.

Syntax of λ-calculus

\[t ::= x \quad (a \text{ variable}) \]
\[| \lambda x. t \quad (a \text{ function}) \]
\[| t \ t \quad (\text{function application}) \]
• The syntax of lambda-calculus comprises three sorts of terms
 – Variable itself is a term
 – The abstraction of a variable x from a term t is a term
 – The application of term t₁ to another term t₂, is a term.

Two conventions of writing lambda-terms

• Application is left associative
 – Given s t u, the calculation is (s t) u
 \[\text{apply} \]
 \[\text{apply} \quad u \]
 \[s \quad t \]
Two Conventions

- The body of abstraction is extended to right as much as possible
 - Given \(\lambda x. \lambda y. x \, y \, x \), the calculation is \(\lambda x. (\lambda y. ((x \, y) \, x)) \).

<table>
<thead>
<tr>
<th>Two Conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The body of abstraction is extended to right as much as possible</td>
</tr>
<tr>
<td>• Given (\lambda x. \lambda y. x , y , x), the calculation is (\lambda x. (\lambda y. ((x , y) , x))).</td>
</tr>
</tbody>
</table>

Scope

- An occurrence of the variable \(x \) is said to be bound when it occurs in the body \(t \) of an abstraction \(\lambda x. t \).
- An occurrence of \(x \) is free if it appears in a position where it is not bound by an enclosing abstraction on \(x \).
 - In \(x \, y \), and \(\lambda y. x \, y \), \(x \) is free.
 - In \(\lambda x. x \), and \(\lambda z. \lambda x. \lambda y. (y \, z) \), \(x \) is bound.

<table>
<thead>
<tr>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An occurrence of the variable (x) is said to be bound when it occurs in the body (t) of an abstraction (\lambda x. t).</td>
</tr>
<tr>
<td>• An occurrence of (x) is free if it appears in a position where it is not bound by an enclosing abstraction on (x).</td>
</tr>
<tr>
<td>• In (x , y), and (\lambda y. x , y), (x) is free.</td>
</tr>
<tr>
<td>• In (\lambda x. x), and (\lambda z. \lambda x. \lambda y. (y , z)), (x) is bound.</td>
</tr>
</tbody>
</table>

Operational Semantics

- \((\lambda x. t_{12}) t_2 \rightarrow (x_1 \rightarrow t_2) t_{12} \)
 - Evaluate the term \(t_{12} \) by replacing every occurrence of \(x \) with \(t_2 \).
 - What is the reduction result of \((\lambda x. x) \, y \) ?
 - What is the evaluation result of the term \((\lambda x. x) ((\lambda x. x) \, x)) \,(u \, r) \) ?
 - All terms of the form \((\lambda x. t_{12}) t_2 \) is called redex (reducible expression).
 - The operation of rewriting a redex according to the above rule is called beta-reduction.

<table>
<thead>
<tr>
<th>Operational Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ((\lambda x. t_{12}) t_2 \rightarrow (x_1 \rightarrow t_2) t_{12})</td>
</tr>
<tr>
<td>• Evaluate the term (t_{12}) by replacing every occurrence of (x) with (t_2).</td>
</tr>
<tr>
<td>• What is the reduction result of ((\lambda x. x) , y) ?</td>
</tr>
<tr>
<td>• What is the evaluation result of the term ((\lambda x. x) ((\lambda x. x) , x)) ,(u , r)) ?</td>
</tr>
<tr>
<td>• All terms of the form ((\lambda x. t_{12}) t_2) is called redex (reducible expression).</td>
</tr>
<tr>
<td>• The operation of rewriting a redex according to the above rule is called beta-reduction.</td>
</tr>
</tbody>
</table>

An Example of Reduction

- \((\lambda x. x) ((\lambda x. x)(\lambda z. (\lambda x. x) \, z)) \)
 - \((\lambda x. x)(\lambda z. (\lambda x. x) \, z) \)
 - \(\lambda z. (\lambda x. x) \, z \)

<table>
<thead>
<tr>
<th>An Example of Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ((\lambda x. x) ((\lambda x. x)(\lambda z. (\lambda x. x) , z)))</td>
</tr>
<tr>
<td>• ((\lambda x. x)(\lambda z. (\lambda x. x) , z))</td>
</tr>
<tr>
<td>• (\lambda z. (\lambda x. x) , z)</td>
</tr>
</tbody>
</table>

Programming in the Lambda-Calculus

- Multiple arguments
 - Lambda-calculus provides no built-in support for multi-argument functions.
 - But we can use higher-order functions to achieve the same effect.
Multiple Arguments

- Suppose
 - s is a term involving two free variables x and y
 - We want to write a function f, such that for each pair of arguments (v, w), f yields the result of substituting v for x, and w for y
 - f = λx. λy. s
 - Applying f to (v, w): f v w

Multiple Arguments

- The transformation of multi-argument functions into higher-order functions is called currying