
10/26/17	

1	

•  Determining
attribute
evaluation order
for any attribute
grammar is a
complex problem,
requiring the
construction of a
dependency graph
to show all
attribute
dependencies

Attribute Evaluation Order
<assign>	

<var>	 <expr>	

A	 =	

<var>[1]	 <var>[2]	

A	 +	 B	

actual_type	

expected_type	

actual_type	 actual_type	

actual_type	

N.	Meng,	S.	Arthur	

① 		

② 		

③ 		 ④ 		

⑤ 		

1	

Decoration of a parse tree for the val
attribute evaluation of (1 + 3) * 2

N.	Meng,	S.	Arthur	 2	

E1 → E2 + T E1.val = E2.val + T.val
E1 → E2 – T E1.val = E2.val - T.val
E → T E.val = T.val
T1 → T2 * F T1.val = T2.val * F.val
T1 → T2 / F T1.val = T2.val / F.val
T → F T.val = F.val
F1 → - F2 F1.val = - F2.val
F → (E) F.val = E.val
F → const F.val = C.val

Attribute
Grammar for

Constant
Expressions

based on
LL(1) CFG

N.	Meng,	S.	Arthur	 3	

Attribute Grammar for CE LL(1) CFG

•  Attributes
– st: subtotal attribute to record

intermediate evaluation result so far
– val: value attribute to copy the right-most

leaf back up to the root

N.	Meng,	S.	Arthur	 4	

N.	Meng,	S.	Arthur	

Decoration of parse
tree for (1 + 3) * 2

5	

Program Assignment 2
Due date: 11/9 12:30pm

•  Bitwise Manipulation of Hexidecimal
Numbers

•  CFG

N.	Meng,	S.	Arthur	 6	

E → E “|” A bitwise OR
E → A
A → A “^” B bitwise XOR
A → B
B → B “&” C bitwise AND
B → C
C → “<” C bitwise shift left 1
C → “>” C bitwise shift right 1
C → “~” C bitwise NOT
C → “(” E “)”
C → hex

10/26/17	

2	

LL(1) Attribute
Grammar

7	

E → A EE
EE.st = A.val E.val = EE.val

EE1 → | A EE2
EE2.st = EE1.st | A.val (“|” bitwise OR)
EE1.val = EE2.val

EE → ε
EE.val = EE.st

A → B AA
AA.st = B.val A.val = AA.val

AA1 → ^ B AA2
AA2.st = AA1.st ^ B.val (“^” bitwise XOR)
AA1.val = AA2.val

AA → ε
AA.val = AA.st

B → C BB
BB.st = C.val B.val = BB.val

BB1 → & C BB2
BB2.st = BB1.st & C.val (“&” bitwise AND)
BB1.val = BB2.val

BB → ε
BB.val = BB.st

C1 → <C2
C1.val = C2.val << 1 (“<<” bitwise shift left one)

C1 → >C2
C1.val = C2.val >> 1 (“>>” bitwise shift right one)

C1 → ~C2
C1.val = ~C2.val (“~” bitwise NOT)

C → (E)
C.val = E.val

C → hex
C.val = hex.val

Program Requirement

•  Write a C program using recursive descent
parser w/ lexical analyzer to implement
the designated inherited and synthesized
attributes. The program evaluates the
expressions in a file input.txt, and outputs
the results to console

•  E.g., input: f&a
 output: f&a = a

N.	Meng,	S.	Arthur	 8	

Program Requirements

•  You cannot use more than 2 global/non-
local variables, and they should be to
hold the Operator and HexNumber as
detected by the lexical analyzer

N.	Meng,	S.	Arthur	 9	

Hints

•  To solve the problems, you should take
the following steps:
– Write a lexical analyzer
– Write a recursive-descent parser
– Attributes are processed as either pass-in

parameters or return value of functions

N.	Meng,	S.	Arthur	 10	

Hints

•  Write a lexical analyzer
– You may need to define an enum type for all

possible tokens your scanner can generate
– E.g., when reading hexadecimial numbers

0-9 or a-f, the recognized token is HEX,
and the value is saved in HexNumber

N.	Meng,	S.	Arthur	 11	

Hints

•  Write a recursive-descent parser
– Parse the program by defining and invoking

functions
– E.g., E → A EE
 EE.st = A.val
 E.val = EE.val

 int E() {
 int val = A();

 return EE(val);
 }

N.	Meng,	S.	Arthur	 12	

10/26/17	

3	

Hints

•  There are parameters passed in or returned
when invoking functions. When invoking a
function, the synthesized attribute is the
return value, while the inherited attribute is
the passing-in parameter

N.	Meng,	S.	Arthur	 13	

Hints

•  Sample code of main()

N.	Meng,	S.	Arthur	 14	

int main() {
 int val;
 symbol = getNextToken();
 while (symbol != EOF_) {
 if (symbol != NEW_LINE) {
 val = E();
 printf(" = %x\n", val & 0xf);
 }
 if (symbol == EOF_) break;
 symbol = getNextToken();
 }
 return 1;

}

Submission Requirements

•  Pack the following files into a .tar file:
– Source file: parser.c
– Executable file: parser
– Input file: input.txt
– Output file: output.txt (copy all your

console outputs to this file)
– README file (optional, used if you have any

additional comments/explanations about
the files)

N.	Meng,	S.	Arthur	 15	

DYNAMIC SEMANTICS

N.	Meng,	S.	Arthur	 16	

Dynamic Semantics

•  Describe the meaning of expressions,
statements, and program units

•  No single widely acceptable notation or
formalism for describing semantics

•  Two common approaches:
– Operational
– Denotational

N.	Meng,	S.	Arthur	 17	

Operational Semantics

•  Gives a program's meaning in terms of
its implementation on a real or virtual
machine

•  Change in the state of the machine
(memory, registers, etc.) defines the
meaning of the statement

N.	Meng,	S.	Arthur	 18	

10/26/17	

4	

Operational Semantics Definition Process

1.  Design an appropriate intermediate
language. Each construct of the
intermediate language must have an
obvious and unambiguous meaning

2.  Construct a virtual machine (an
interpreter) for the intermediate
language. The virtual machine can be used
to execute either single statements, code
segments, or whole programs

N.	Meng,	S.	Arthur	 19	

An Example

•  The virtual computer is supposed to be
able to correctly “execute” the
instructions and recognize the effects
of the “execution”

C Operational Semantics

for (expr1; expr2; expr3)
{
 . . .
}

 expr1;
loop: if expr2 == 0 goto out
 . . .
 expr3;
 goto loop
out: . . .

N.	Meng,	S.	Arthur	 20	

Key Points of Operational Semantics

•  Advantages
– May be simple and intuitive for small

examples
– Good if used informally
– Useful for implementation

•  Disadvantages
– Very complex for large programs
– Lacks mathematical rigor

N.	Meng,	S.	Arthur	 21	

Typical Usage of Operational
Semantics

•  Vienna Definition Language (VDL) used to
define PL/I (Wegner 1972)

•  Unfortunately, VDL is so complex that it
serves no practical purpose

N.	Meng,	S.	Arthur	 22	

Denotational Semantics

•  The most rigorous, widely known method
for describing the meaning of programs

•  Solely based on recursive function
theory

•  Originally developed by Scott and
Strachey (1970)

N.	Meng,	S.	Arthur	 23	

Denotational Semantics

•  Key Idea
– Define for each language entity both a

mathematical object, and a function that
maps instances of that entity onto
instances of the mathematical object

•  The basic idea
– There are rigorous ways of manipulating

mathematical objects but not programming
language constructs

N.	Meng,	S.	Arthur	 24	

10/26/17	

5	

Denotational Semantics

•  Difficulty
– How to create the objects and the mapping

functions?
•  The method is named denotational,

because the mathematical objects
denote the meaning of their
corresponding syntactic entities

N.	Meng,	S.	Arthur	 25	

Denotational vs. Operational

•  Both denotational semantics and
operational semantics are defined in terms
of state changes in a virtual machine

•  In operational semantics, the state changes
are defined by coded algorithms in the
machine

•  In denotational semantics, the state change
is defined by rigorous mathematical
functions

N.	Meng,	S.	Arthur	 26	

Program State
•  Let the state s of a program be a set of

pairs as follows:
 {<i1, v1>, <i2, v2>, …, <in, vn>}
– Each i is the name of a variable
– The associated v is the current value of the

variable
– Any v can have the special value undef,

indicating that the associated variable is
undefined

•  Let VARMAP be a function as follows:
 VARMAP(ij, s) = vj

N.	Meng,	S.	Arthur	 27	

Program State

•  Most semantics mapping functions for
programs and program constructs map
from states to states

•  These state changes are used to define
the meanings of programs and program
constructs

•  Some language constructs, such as
expressions, are mapped to values, not
state changes

N.	Meng,	S.	Arthur	 28	

An Example

•  CFG for binary numbers
 <bin_num> -> ‘0’
 <bin_num> -> ‘1’
 <bin_num> -> <bin_num> ‘0’
 <bin_num> -> <bin_num> ‘1’

•  Parse tree of the binary number 110
<bin_num>

<bin_num>

<bin_num>

‘1’

‘1’

‘0’

N.	Meng,	S.	Arthur	 29	

Example Semantic Rule Design
•  Mathematical objects
– Decimal number equivalence for each binary

number
•  Functions
– Map binary numbers to decimal numbers
– Rules with terminals as RHS are translated as

direct mappings from terminals to
mathematical objects

– Rules with nonterminals as RHS are translated
as manipulations on mathematical objects

N.	Meng,	S.	Arthur	 30	

10/26/17	

6	

Example Semantic Rules

Syntax Rules Semantic Rules

<bin_num>->‘0’
<bin_num>->‘1’
<bin_num>-><bin_num> ‘0’
<bin_num>-><bin_num> ‘1’

Mbin(‘0’)=0
Mbin(‘1’)=1
Mbin(<bin_num> ‘0’)=  
 2*Mbin(<bin_num>)
Mbin(<bin_num> ‘1’)=  
 2*Mbin(<bin_num>)+1

N.	Meng,	S.	Arthur	 31	

Expressions

•  CFG for expressions
 <expr> -> <dec_num> | <var> | <binary_expr>

 <binary_expr> -> <l_expr> <op> <r_expr>
 <l_expr> -> <dec_num> | <var>
 <r_expr> -> <dec_num> | <var>
 <op> -> + | *

N.	Meng,	S.	Arthur	 32	

Expressions
Me(<expr>, s) Δ=
 case <expr> of
 <dec_num> ⇒ Mdec(<dec_num>)
 <var> ⇒ VARMAP(<var>, s)
 <binary_expr> ⇒
 if (<binary_expr>.<op> = ‘+’) then
 Me(<binary_expr>.<l_expr>, s) +
 Me(<binary_expr>.<r_expr>, s)
 else
 Me(<binary_expr>.<l_expr>, s) ×
 Me(<binary_expr>.<r_expr>, s) N.	Meng,	S.	Arthur	 33	

Statement Basics

•  The meaning of a single statement
executed in a state s is a new state s’,
which reflects the effects of the
statement
 Mstmt(stmt , s) = s’

N.	Meng,	S.	Arthur	 34	

Assignment Statements

Ma(x := E, s) Δ=
 s’ = {<i1’, v1’>, <i2’, v2’>, ..., <in’,vn’>},

 where for j = 1, 2, ..., n,
 vj’ = VARMAP(ij, s) if ij ≠ x
 vj’ = Me(E, s) if ij = x

N.	Meng,	S.	Arthur	 35	

Sequence of Statements

 Mstmt(stmt1; stmt2 , s) Δ=
 Mstmt(stmt2 , Mstmt(stmt1 , s))
or
 Mstmt(stmt1; stmt2 , s) = s’’ where

 s’ = Mstmt(stmt1 , s)
 s’’ = Mstmt(stmt2 , s’)

N.	Meng,	S.	Arthur	 36	

10/26/17	

7	

Sequence of Statements

Initial state s0 = <mem0, i0, o0>
Mstmt(P0, s0) = Mstmt(P1, Ma(x := 5 , s0))

 s1

s1 = <mem1, i1, o1> where
 VARMAP(x, s1) = 5
 VARMAP(z, s1) = VARMAP(z, s0) for all z ≠ x
 i1 = i0, o1 = o0

} P2

x := 5;
y := x + 1;
write(x * y); } P1 } P0

N.	Meng,	S.	Arthur	 37	

Sequence of Statements

Mstmt(P1, s1) = Mstmt(P2, Ma(y := x + 1, s1))
 s2

s2 = <mem2, i2, o2> where
 VARMAP(y, s2) = Me(x + 1, s1) = 6
 VARMAP(z, s2) = VARMAP(z, s1) for all z ≠ y
 i2 = i1, o2 = o1

} P2

x := 5;
y := x + 1;
write(x * y); } P1 } P0

N.	Meng,	S.	Arthur	 38	

Sequence of Statements

Mstmt(P2, s2) = Mstmt(write(x * y), s2) = s3
s3 = <mem3, i3, o3> where

 VARMAP(z, s3) = VARMAP(z, s2) for all z
 i3 = i2, o3 = o2 • Me(x * y , s2) = o2 • 30

} P2

x := 5;
y := x + 1;
write(x * y); } P1 } P0

N.	Meng,	S.	Arthur	 39	

Sequence of Statements

Therefore,
Mstmt(P, s0) = s3 = <mem3, i3, o3 > where
 VARMAP(y, s3) = 6
 VARMAP(x, s3) = 5
 VARMAP(z, s3) = VARMAP(z, s0) for all z ≠ x, y
 i3 = i0
 o3 = o0 • 30

N.	Meng,	S.	Arthur	 40	

Logical Pretest Loops
•  The meaning of the loop is the value of

program variables after the loop body has
been executed the prescribed number of
times, assuming there have been no errors

•  The loop is converted from iteration to
recursion, where the recursion control is
mathematically defined by other recursive
state mapping functions

•  Recursion is easier to describe with
mathematical rigor than iteration

N.	Meng,	S.	Arthur	 41	

Logical Pretest Loop

•  Ml(while B do L, s) Δ=
 if Mb(B, s) = false then
 s
 else
 Ml(while B do L, Mstmt(L, s))

N.	Meng,	S.	Arthur	 42	

10/26/17	

8	

Postest Loop ?

•  Mptl(do L until not B, s) Δ = ?

N.	Meng,	S.	Arthur	 43	

Key Points of Denotational Semantics

•  Advantages
– Compact & precise, with solid mathematical

foundation
– Provide a rigorous way to think about

programs
– Can be used to prove the correctness of

programs
– Can be an aid to language design

N.	Meng,	S.	Arthur	 44	

Key Points of Denotational Semantics

•  Disadvantages
– Require mathematical sophistication
– Hard for programmer to use

•  Uses
– Semantics for Algol-60, Pascal, etc.
– Compiler generation and optimization

N.	Meng,	S.	Arthur	 45	

Summary

•  Each form of semantic description has
its place

•  Operational semantics
– Informally describe the meaning of

language constructs in terms of their
effects on an ideal machine

•  Denotational semantics
– Formally define mathematical objects and

functions to represent the meanings

N.	Meng,	S.	Arthur	 46	

