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•  Determining 
attribute 
evaluation order 
for any attribute 
grammar is a 
complex problem, 
requiring the  
construction of a 
dependency graph 
to show all 
attribute 
dependencies 

Attribute Evaluation Order 
<assign>	

<var>	 <expr>	

A	 =	

<var>[1]	 <var>[2]	

A	 +	 B	

actual_type	

expected_type	

actual_type	 actual_type	

actual_type	
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Decoration of a parse tree for the val 
attribute evaluation of  (1 + 3) * 2 
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E1 → E2 + T   E1.val = E2.val + T.val 
E1 → E2 – T   E1.val = E2.val - T.val 
E  → T    E.val  = T.val 
T1 → T2 * F   T1.val = T2.val * F.val 
T1 → T2 / F   T1.val = T2.val / F.val 
T  → F      T.val  = F.val 
F1  → - F2   F1.val = - F2.val 
F  → (E)   F.val  = E.val 
F  → const   F.val  = C.val 

Attribute 
Grammar for 

Constant 
Expressions 

based on 
LL(1) CFG  
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Attribute Grammar for CE LL(1) CFG 

•  Attributes 
– st: subtotal attribute to record 

intermediate evaluation result so far 
– val: value attribute to copy the right-most 

leaf back up to the root 
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Decoration of parse 
tree for (1 + 3) * 2 
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Program Assignment 2 
Due date: 11/9 12:30pm 

•  Bitwise Manipulation of Hexidecimal 
Numbers 

•  CFG 
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E → E “|” A   bitwise OR 
E → A 
A → A “^” B   bitwise XOR 
A → B 
B → B “&” C   bitwise AND 
B → C 
C → “<” C  bitwise shift left 1 
C → “>” C  bitwise shift right 1 
C → “~” C  bitwise NOT 
C → “(”  E  “)” 
C → hex 
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LL(1) Attribute 
Grammar 
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E → A EE 
EE.st = A.val  E.val = EE.val 
  
EE1 → | A EE2 
EE2.st = EE1.st | A.val   (  “|” bitwise OR ) 
EE1.val = EE2.val 
  
EE → ε 
EE.val = EE.st 
  
A → B AA 
AA.st = B.val  A.val = AA.val 
  
AA1 → ^ B AA2  
AA2.st = AA1.st ^ B.val   ( “^” bitwise XOR ) 
AA1.val = AA2.val 
  
AA → ε 
AA.val = AA.st 
  
B → C BB 
BB.st = C.val  B.val = BB.val 
  
BB1 → & C BB2 
BB2.st = BB1.st & C.val   ( “&” bitwise AND ) 
BB1.val = BB2.val 
  
BB → ε 
BB.val = BB.st 
  
C1 → <C2 
C1.val = C2.val << 1   ( “<<” bitwise shift left one ) 
  
C1 → >C2 
C1.val = C2.val >> 1   ( “>>” bitwise shift right one ) 
  
C1 → ~C2 
C1.val = ~C2.val    ( “~” bitwise NOT ) 
  
C → ( E ) 
C.val = E.val 
  
C → hex 
C.val = hex.val 

Program Requirement 

•  Write a C program using recursive descent 
parser w/ lexical analyzer to implement 
the designated inherited and synthesized 
attributes. The program evaluates the 
expressions in a file input.txt, and outputs 
the results to console 

•  E.g., input: f&a 
          output: f&a = a 
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Program Requirements 

•  You cannot use more than 2 global/non-
local variables, and they should be to 
hold the Operator and HexNumber as 
detected by the lexical analyzer 
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Hints 

•  To solve the problems, you should take 
the following steps: 
– Write a lexical analyzer 
– Write a recursive-descent parser 
– Attributes are processed as either pass-in 

parameters or return value of functions 
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Hints 

•  Write a lexical analyzer 
– You may need to define an enum type for all 

possible tokens your scanner can generate 
– E.g., when reading hexadecimial numbers 

0-9 or a-f, the recognized token is HEX, 
and the value is saved in HexNumber 
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Hints 

•  Write a recursive-descent parser 
– Parse the program by defining and invoking 

functions 
– E.g., E → A EE 
   EE.st = A.val  
   E.val = EE.val 

  int E() { 
  int val = A(); 

    return EE(val); 
  } 
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Hints 

•  There are parameters passed in or returned 
when invoking functions. When invoking a 
function, the synthesized attribute is the 
return value, while the inherited attribute is 
the passing-in parameter  
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Hints 

•  Sample code of main() 
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int main() { 
 int val; 
 symbol = getNextToken(); 
 while (symbol != EOF_) { 
  if (symbol != NEW_LINE) { 
   val = E(); 
   printf(" = %x\n", val & 0xf);   
  }   
  if (symbol == EOF_) break; 
  symbol = getNextToken(); 
 }  
 return 1;   

} 

Submission Requirements 

•  Pack the following files into a .tar file: 
– Source file: parser.c 
– Executable file: parser 
– Input file: input.txt 
– Output file: output.txt (copy all your 

console outputs to this file) 
– README file (optional, used if you have any 

additional comments/explanations about 
the files) 
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DYNAMIC SEMANTICS 
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Dynamic Semantics 

•  Describe the meaning of expressions, 
statements, and program units 

•  No single widely acceptable notation or 
formalism for describing semantics 

•  Two common approaches: 
– Operational 
– Denotational 
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Operational Semantics 

•  Gives a program's meaning in terms of 
its implementation on a real or virtual 
machine 

•  Change in the state of the machine  
(memory, registers, etc.) defines the 
meaning of the statement 
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Operational Semantics Definition Process 

1.  Design an appropriate intermediate 
language. Each construct of the 
intermediate language must have an 
obvious and unambiguous meaning 

2.  Construct a virtual machine (an 
interpreter) for the intermediate 
language. The virtual machine can be used 
to execute either single statements, code 
segments, or whole programs 
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An Example 

•  The virtual computer is supposed to be 
able to correctly “execute” the 
instructions and recognize the effects 
of the “execution” 

C Operational Semantics 

for (expr1; expr2; expr3) 
{
  . . . 
}

      expr1;
loop: if expr2 == 0 goto out
        . . .
        expr3;
        goto loop
out:  . . .
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Key Points of Operational Semantics 

•  Advantages 
– May be simple and intuitive for small 

examples 
– Good if used informally 
– Useful for implementation 

•  Disadvantages 
– Very complex for large programs 
– Lacks mathematical rigor 
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Typical Usage of Operational 
Semantics 

•  Vienna Definition Language (VDL) used to 
define PL/I (Wegner 1972) 

•  Unfortunately, VDL is so complex that it 
serves no practical purpose 
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Denotational Semantics 

•  The most rigorous, widely known method 
for describing the meaning of programs 

•  Solely based on recursive function 
theory 

•  Originally developed by Scott and 
Strachey (1970) 
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Denotational Semantics 

•  Key Idea 
– Define for each language entity both a 

mathematical object, and a function that 
maps instances of that entity onto 
instances of the mathematical object 

•  The basic idea 
– There are rigorous ways of manipulating 

mathematical objects but not programming 
language constructs 
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Denotational Semantics 

•  Difficulty  
– How to create the objects and the mapping 

functions? 
•  The method is named denotational, 

because the mathematical objects 
denote the meaning of their 
corresponding syntactic entities 
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Denotational vs. Operational 

•  Both denotational semantics and 
operational semantics are defined in terms 
of state changes in a virtual machine 

•  In operational semantics, the state changes 
are defined by coded algorithms in the 
machine 

•  In denotational semantics, the state change 
is defined by rigorous mathematical 
functions 
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Program State 
•  Let the state s of a program be a set of 

pairs as follows: 
  {<i1, v1>, <i2, v2>, …, <in, vn>} 
– Each i is the name of a variable 
– The associated v is the current value of the 

variable 
– Any v can have the special value undef, 

indicating that the associated variable is 
undefined 

•  Let VARMAP be a function as follows: 
  VARMAP(ij, s) = vj 
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Program State 

•  Most semantics mapping functions for 
programs and program constructs map 
from states to states 

•  These state changes are used to define 
the meanings of programs and program 
constructs 

•  Some language constructs, such as 
expressions, are mapped to values, not 
state changes 
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An Example 

•  CFG for binary numbers  
  <bin_num> -> ‘0’ 
  <bin_num> -> ‘1’ 
  <bin_num> -> <bin_num> ‘0’ 
  <bin_num> -> <bin_num> ‘1’ 

•  Parse tree of the binary number 110 
<bin_num>

<bin_num>

<bin_num>

‘1’

‘1’

‘0’
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Example Semantic Rule Design 
•  Mathematical objects 
– Decimal number equivalence for each binary 

number  
•  Functions 
– Map binary numbers to decimal numbers 
– Rules with terminals as RHS are translated as 

direct mappings from terminals to 
mathematical objects 

– Rules with nonterminals as RHS are translated 
as manipulations on mathematical objects 
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Example Semantic Rules 

Syntax Rules Semantic Rules

<bin_num>->‘0’
<bin_num>->‘1’
<bin_num>-><bin_num> ‘0’
<bin_num>-><bin_num> ‘1’

Mbin(‘0’)=0
Mbin(‘1’)=1
Mbin(<bin_num> ‘0’)=  
    2*Mbin(<bin_num>)
Mbin(<bin_num> ‘1’)=  
    2*Mbin(<bin_num>)+1
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Expressions 

•  CFG for expressions 
 <expr>  -> <dec_num> | <var> | <binary_expr> 

    <binary_expr> -> <l_expr> <op> <r_expr> 
    <l_expr> -> <dec_num> | <var> 
    <r_expr> -> <dec_num> | <var> 
    <op> -> + | * 
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Expressions 
Me(<expr>, s) Δ= 
    case <expr> of 
      <dec_num> ⇒ Mdec(<dec_num>) 
      <var> ⇒ VARMAP(<var>, s) 
      <binary_expr> ⇒ 
         if (<binary_expr>.<op> = ‘+’) then 
             Me(<binary_expr>.<l_expr>, s) +  
             Me(<binary_expr>.<r_expr>, s) 
         else 
             Me(<binary_expr>.<l_expr>, s) × 
             Me(<binary_expr>.<r_expr>, s) N.	Meng,	S.	Arthur	 33	

Statement Basics 

•  The meaning of a single statement 
executed in a state s is a new state s’, 
which reflects the effects of the 
statement 
  Mstmt( stmt , s) = s’ 
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Assignment Statements 

Ma(x := E, s) Δ= 
   s’ = {<i1’, v1’>, <i2’, v2’>, ..., <in’,vn’>}, 

       where for j = 1, 2, ..., n, 
              vj’ = VARMAP(ij, s)   if   ij ≠ x 
              vj’ = Me(E, s)            if   ij = x 

N.	Meng,	S.	Arthur	 35	

Sequence of Statements 

 Mstmt( stmt1; stmt2 , s) Δ= 
     Mstmt( stmt2 , Mstmt( stmt1 , s)) 
or  
 Mstmt( stmt1; stmt2 , s) = s’’ where 

     s’ = Mstmt( stmt1 , s) 
     s’’ = Mstmt( stmt2 , s’) 
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Sequence of Statements 

Initial state s0 = <mem0, i0, o0> 
Mstmt( P0, s0) = Mstmt( P1, Ma( x := 5  , s0)) 

           s1 

s1 = <mem1, i1, o1> where 
 VARMAP(x, s1) = 5 
 VARMAP(z, s1) = VARMAP(z, s0) for all z ≠ x 
 i1 = i0, o1 = o0 

} P2 

x := 5;                             
y := x + 1; 
write(x * y);      }  P1 }  P0 
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Sequence of Statements 

Mstmt( P1, s1) = Mstmt( P2, Ma( y := x + 1, s1))  
           s2 

s2 = <mem2, i2, o2> where 
 VARMAP(y, s2) = Me( x + 1, s1) = 6 
 VARMAP(z, s2) = VARMAP(z, s1) for all z ≠ y 
 i2 = i1, o2 = o1 

 
 
 
 

} P2 

x := 5;                             
y := x + 1; 
write(x * y);      }  P1 }  P0 
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Sequence of Statements 

Mstmt( P2, s2) = Mstmt( write(x * y), s2) = s3 
s3 = <mem3, i3, o3> where 

 VARMAP(z, s3) = VARMAP(z, s2) for all z 
 i3 = i2, o3 = o2 • Me(  x * y  , s2) = o2 • 30 

 

} P2 

x := 5;                             
y := x + 1; 
write(x * y);      }  P1 }  P0 
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Sequence of Statements 

Therefore,  
Mstmt( P,  s0) = s3 = <mem3, i3, o3 > where 
     VARMAP(y, s3) = 6 
     VARMAP(x, s3) = 5 
     VARMAP(z, s3) = VARMAP(z, s0) for all z ≠ x, y 
     i3 = i0 
     o3 = o0 • 30 
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Logical Pretest Loops 
•  The meaning of the loop is the value of 

program variables after the loop body has 
been executed the prescribed number of 
times, assuming there have been no errors 

•  The loop is converted from iteration to 
recursion, where the recursion control is 
mathematically defined by other recursive 
state mapping functions 

•  Recursion is easier to describe with 
mathematical rigor than iteration 
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Logical Pretest Loop 

•  Ml(while B do L, s) Δ= 
       if  Mb(B, s) = false  then 
           s 
       else 
           Ml(while B do L, Mstmt(L, s)) 
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Postest Loop ? 

•  Mptl(do L until not B, s) Δ =  ? 
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Key Points of Denotational Semantics 

•  Advantages 
– Compact & precise, with solid mathematical 

foundation 
– Provide a rigorous way to think about 

programs 
– Can be used to prove the correctness of 

programs 
– Can be an aid to language design 
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Key Points of Denotational Semantics 

•  Disadvantages 
– Require mathematical sophistication 
– Hard for programmer to use 

•  Uses 
– Semantics for Algol-60, Pascal, etc. 
– Compiler generation and optimization 
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Summary 

•  Each form of semantic description has 
its place 

•  Operational semantics  
– Informally describe the meaning of 

language constructs in terms of their 
effects on an ideal machine 

•  Denotational semantics 
– Formally define mathematical objects and 

functions to represent the meanings 
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