
10/5/17	

1	

Lexical and Syntax Analysis

In Text: Chapter 4

Lexical and Syntactic Analysis

•  Two steps to discover the syntactic
structure of a program
– Lexical analysis (Scanner): to read the input

characters and output a sequence of tokens
– Syntactic analysis (Parser): to read the

tokens and output a parse tree and report
syntax errors if any

2	

Interaction between lexical analysis
and syntactic analysis

3	

Reasons to Separate Lexical and
Syntax Analysis

•  Simplicity - less complex approaches can
be used for lexical analysis; separating
them simplifies the parser

•  Efficiency - separation allows
optimization of the lexical analyzer

•  Portability - parts of the lexical
analyzer may not be portable, but the
parser is always portable

4	

Scanner

•  Pattern matcher for character strings
– If a character sequence matches a pattern,

it is identified as a token
•  Responsibilities
– Tokenize source, report lexical errors if

any, remove comments and whitespace, save
text of interesting tokens, save source
locations, (optional) expand macros and
implement preprocessor functions

5	

Tokenizing Source

•  Given a program, identify all lexemes and
their categories (tokens)

6	

10/5/17	

2	

Motivating Example

•  Token set:
–  assign -> :=
–  plus -> +
– minus -> -
–  times -> *
– div -> /
–  lparen -> (
–  rparen ->)
–  id -> letter(letter|digit)*
–  number -> digit digit*|digit*(.digit|digit.)digit*

7	

Motivating Example

•  What are the lexemes in the string
“a_var:=b*3” ?

•  What are the corresponding tokens ?
•  How do you identify the tokens?

8	

Lexical Analysis
•  Three approaches to building a lexical

analyzer:
– Write a formal description of the tokens and

use a software tool that constructs a table-
driven lexical analyzer from such a description

– Design a state diagram that describes the
tokens and write a program that implements
the state diagram

– Design a state diagram that describes the
tokens and hand-construct a table-driven
implementation of the state diagram

9	

State Diagram Design

•  A naïve state diagram would have a
transition from every state on every
character in the source language - such
a diagram would be very large!

10	

Lexical Analysis (continued)

•  In many cases, transitions can be
combined to simplify the state diagram
– When recognizing an identifier, all

uppercase and lowercase letters are
equivalent
•  Use a character class that includes all letters

– When recognizing an integer literal, all
digits are equivalent - use a digit class

11	

Lexical Analysis (continued)

•  Reserved words and identifiers can be
recognized together (rather than having
a part of the diagram for each reserved
word)
– Use a table lookup to determine whether a

possible identifier is in fact a reserved
word

12	

10/5/17	

3	

Lexical Analysis (continued)

•  Convenient utility subprograms:
– getChar - gets the next character of

input, puts it in nextChar, determines its
class and puts the class in charClass

– addChar - puts the character from
nextChar into the place the lexeme is being
accumulated

– lookup - determines whether the string in
lexeme is a reserved word (returns a code)

13	

State Diagram

14	

Implementation Pseudo-code
static TOKEN nextToken;

static CHAR_CLASS charClass;

int lex() {
 switch (charClass) {
 case LETTER:
 // add nextChar to lexeme
 addChar();

 // get the next character and determine its class
 getChar();
 while (charClass == LETTER || charClass == DIGIT)
 {
 addChar();
 getChar();
 }
 nextToken = ID;
 break;

15	

case DIGIT:
 addChar();
 getChar();
 while (charClass == DIGIT) {
 addChar();
 getChar();
 }
 nextToken = INT_LIT;
 break;
…
case EOF:
 nextToken = EOF;
 lexeme[0] = ‘E’;
 lexeme[1] = ‘O’;
 lexeme[2] = ‘F’;
 lexeme[3] = 0;
}
printf (“Next token is: %d, Next lexeme is %s\n”,

nextToken, lexeme);
 return nextToken;
} /* End of function lex */

16	

Lexical Analyzer
Implementation:
 à front.c (pp. 166-170)

 - Following is the output of the lexical analyzer

of front.c when used on (sum + 47) /
total

Next token is: 25 Next lexeme is (
Next token is: 11 Next lexeme is sum
Next token is: 21 Next lexeme is +
Next token is: 10 Next lexeme is 47
Next token is: 26 Next lexeme is)
Next token is: 24 Next lexeme is /
Next token is: 11 Next lexeme is total
Next token is: -1 Next lexeme is EOF

17	

The Parsing Problem

•  Goals of the parser, given an input
program:
– Find all syntax errors; for each, produce an

appropriate diagnostic message and recover
quickly

– Produce the parse tree, or at least a trace
of the parse tree, for the program

18	

10/5/17	

4	

The Parsing Problem (continued)

•  The Complexity of Parsing
– Parsers that work for any unambiguous

grammar are complex and inefficient
(O(n3), where n is the length of the input)

– Compilers use parsers that only work for a
subset of all unambiguous grammars, but do
it in linear time (O(n), where n is the
length of the input)

19	

Two Classes of Grammars

•  Left-to-right, Leftmost derivation (LL)
•  Left-to-right, Rightmost derivation (LR)
•  We can build parsers for these

grammars that run in linear time

20	

Grammar Comparison

21	

LL LR
E -> T E’
E’ -> + T E’ | ε
T -> F T’
T’ -> * F T’ | ε
F -> id

E -> E + T | T
T -> T * F | F
F -> id

Two Categories of Parsers
•  LL(1) Parsers
– L: scanning the input from left to right
– L: producing a leftmost derivation
– 1: using one input symbol of lookahead at each

step to make parsing action decisions
•  LR(1) Parsers
– L: scanning the input from left to right
– R: producing a rightmost derivation in
reverse

– 1: the same as above

22	

Two Categories of Parsers

•  LL(1) parsers (predicative parsers)
– Top down
•  Build the parse tree from the root
•  Find a left most derivation for an input string

•  LR(1) parsers (shift-reduce parsers)
– Bottom up
•  Build the parse tree from leaves
•  Reducing a string to the start symbol of a

grammar

23	

Top-down Parsers

•  Given a sentential form, xAα , the
parser must choose the correct A-rule
to get the next sentential form in the
leftmost derivation, using only the first
token produced by A

•  The most common top-down parsing
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation

24	

10/5/17	

5	

Bottom-up parsers

•  Given a right sentential form, α,
determine what substring of α is the
right-hand side of the rule in the
grammar that must be reduced to
produce the previous sentential form in
the right derivation

•  The most common bottom-up parsing
algorithms are in the LR family

25	

