
9/26/17	

1	

Program Syntax

In Text: Chapter 3 & 4

Overview

•  Basic concepts
– Programming language, regular expression,

context-free grammars
•  Lexical analysis
– Scanner

•  Syntactic analysis
– Parser

2	

What is a “Language”?

•  A language is a set of strings of symbols
that are constrained by rules

•  A sentence is a string of symbols
•  A language is a set of sentences

3	

What is a “Language”?

•  Syntax and semantics provide a
language’s definition
– Syntax (Grammar)
•  To describe the structure of a language

– Semantics
•  To describe the meaning or sentences, phrases,

or words

4	

Formal Definition of Languages

•  Recognizers
– A recognition device reads input strings

over the alphabet of the language and
decides whether the input strings belong to
the language

– Example: syntax analysis part of a compiler
•  Generators
– A device that generates sentences of a

language

5	

Natural Languages Are Ambiguous

•  “I saw a man on a hill with a telescope”
•  Programming languages should be

precise and unambiguous
– Both programmers and computers can tell

what a program is supposed to do

6	

9/26/17	

2	

Programming Language Definition

•  Syntax
– To describe what its programs look like
– Specified using regular expressions and
context-free grammars

•  Semantics
– To describe what its programs mean
– Specified using axiomatic semantics,

operational semantics, or denotational
semantics

7	

Regular Expressions

•  A regular expression is one of the
following:
– A character
– The empty string, denoted by ε
– Two or more regular expressions

concatenated
– Two or more regular expressions separated

by | (or)
– A regular expression followed by the Kleene

star (concatenation of zero or more strings)
8	

Regular Expressions

•  The pattern of numeric constants can
be represented as:

9	

What is the meaning of following
expressions ?

•  [0-9a-f]+

•  b[aeiou]+t
•  a*(ba*ba*)*

10	

Define Regular Expressions

•  Match strings only consisting of ‘a’, ‘b’,
or ‘c’ characters

•  Match only the strings “Buy more milk”,
“Buy more bread”, or “Buy more juice”

•  Match identifiers which contain letters
and digits, starting with a letter

11	

Lexeme, Token, & Pattern

•  Lexeme
– A sequence of characters in the source

program with the lowest level of syntactic
meanings
•  E.g., sum, +, -

•  Token
– A category of lexemes
– A lexeme is an instance of token
– The basic building blocks of programs

12	

9/26/17	

3	

Token Examples

13	

Token Informal Description Sample
Lexemes

keyword All keywords defined in the
language

if else

comparison <, >, <=, >=, ==, != <=, !=
id Letter followed by letters and

digits
pi, score, D2

number Any numeric constant 3.14159, 0, 6
literal Anything surrounded by “’s, but

exclude “
“core dumped”

Lexeme, Token, & Pattern

•  Pattern
– A description of the form that the lexemes

of a token may take
– Specified with regular expressions

14	

Context-Free Grammars

•  Context-Free Grammars
– Developed by Noam Chomsky in the

mid-1950s
– Describe the syntax of natural languages
– Define a class of languages called context-

free languages
– Was originally designed for natural

languages

15	

Context-Free Grammars

•  Using the notation Backus-Naur Form
(BNF)

•  A context-free grammar consists of
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions P

16	

Terminals T

•  The basic symbols from which strings
are formed

•  Terminals are tokens
–  if, foo, ->, ‘a’

17	

Non-terminals N

•  Syntactic variables that denote sets of
strings or classes of syntactic structures
– expr, stmt

•  Impose a hierarchical structure on the
language

18	

9/26/17	

4	

Start Symbol S

•  One nonterminal
•  Denote the language defined by the

grammar

19	

Production P

•  Specify the manner in which terminals
and nonterminals are combined to form
strings

•  Each production has the format
 nonterminal -> a string of nonterminals and
 terminals

•  One nonterminal can be defined by a list
of nonterminals and terminals

20	

Production P
•  Nonterminal symbols can have more than

one distinct definition, representing all
possible syntactic forms in the language
 <if_stmt> -> if <logic_expr> then <stmt>

 <if_stmt> -> if <logic_expr> then <stmt> else <stmt>

Or
 <if_stmt> -> if <logic_expr> then <stmt>

 | if <logic_expr> then <stmt> else <stmt>

21	

Backus-Naur Form

•  Invented by John Backus and Peter
Naur to describe syntax of Algol 58/60

•  Used to describe the context-free
grammars

•  A meta-language: a language used to
describe another language

22	

BNF Rules

•  A rule has a left-hand side(LHS), one or
more right-hand side (RHS), and consists
of terminal and nonterminal symbols

•  For a nonterminal, when there is more
than one RHS, there are multiple
alternative ways to expand/replace the
nonterminal
– E.g., <stmt> -> <single_stmt>

 | begin <stmt_list> end
23	

BNF Rules

•  Rules can be defined using recursion
<ident_list> -> ident

 | ident, <ident_list>

•  Two types of recursion
– Left recursion:
•  id_list_prefix -> id_list_prefix, id | id

– Right recursion
•  The above example

24	

9/26/17	

5	

How does BNF work?

•  It is like a mathematical game:
– You start with a symbol S
– You are given rules (Ps) describing how you

can replace the symbol with other symbols
(Ts or Ns)

– The language defined by the BNF grammar
is the set of all terminal strings you can
produce by following these rules

25	

Derivation

•  By repeatedly applying rules to
nonterminals, we end up with strings
containing only terminal symbols
(sentences)

•  All derived strings compose the
language defined by the grammar

26	

An Example Grammar
<program> -> <stmts>

<stmts> -> <stmt>

 | <stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term>

 | <term> - <term>

<term> -> <var>

 | const 27	

An Exemplar Derivation
<program> => <stmts>

 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

28	

sentence

Sentential Forms

•  Every string of symbols in the
derivation is a sentential form

•  A sentence is a sentential form that has
only terminal symbols

•  A leftmost derivation is one in which
the leftmost non-terminal in each
sentential form is the one that is
expanded next in the derivation

29	

Sentential Forms
•  A left-sentential form is a sentential

form that occurs in the leftmost
derivation

•  A rightmost derivation works right to left
instead

•  A right-sentential form is a sentential
form that occurs in the rightmost
derivation

•  Some derivations are neither leftmost nor
rightmost

30	

9/26/17	

6	

Why BNF?

•  Provides a clear and concise syntax
description

•  The parse tree can be generated from
BNF

•  Parsers can be based on BNF and are
easy to maintain

31	

Context-Free Grammars

•  The syntax of simple arithmetic
expression
 expr -> id | number | -expr |(expr)

 |expr op expr
 op -> + | - | * | /

•  What are the terminal symbols and
nonterminal symbols?

•  What is the start symbol?

32	

One Possible Derivation

expr => expr op expr
 => …
 => id + number

33	

Another Example

•  G = {T, N, S, P}
•  What are the

terminals?
•  What are the

nonterminals?
•  What is the

start symbol?
•  Possible

strings?
34	

<program> -> <stmts>

<stmts> -> <stmt>
 |<stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term>
 | <term> - <term>

<term> -> <var>
 | const

Parse Tree

•  A parse tree is
– a hierarchical representation of a

derivation

– to represent the structure of the
derivation of a terminal string from some
non-terminal

– to describe the hierarchical syntactic
structure of programs for any language

35	

An Example

•  Given the simple assignment statement
syntax
 <assign> -> <id> = <expr>
 <id> -> A | B | C
 <expr> -> <id> + <expr>
 | <id> * <expr>
 | (<expr>)
 | <id>

•  With leftmost derivation, how is A = B * (A +
C) generated?

36	

9/26/17	

7	

Derivation for A = B * (A + C)

<assign> => <id> = <expr>
 => A = <expr>
 => A = <id> * <expr>
 => A = B * <expr>
 => A = B * (<expr>)
 => A = B * (<id> + <expr>)
 => A = B * (A + <expr>)
 => A = B * (A + <id>)
 => A = B * (A + C)

37	

The Parse Tree for A = B * (A + C)

38	

<assign>

<id> = <expr>

A <id> * <expr>

B (<expr>)

<id> + <expr>

<id> A

C

Parse Tree

•  A grammar is ambiguous if it generates
a sentential form that has two or more
distinct parse trees

39	

An Ambiguous Grammar

expr -> id | number | -expr |(expr)
 | expr op expr
 op -> + | - | * | /

•  Parse trees for “slope * x + intercept”:

40	

*

What goes wrong?

•  The production rules do not capture the
associativity and precedence of various
operators
– Associativity tells whether the operators

group left to right or right to left
•  Is 10 – 4 – 3 equal to (10 - 4) – 3 or 10 – (4 – 3) ?

– Precedence tells some operators group more
tightly than the others?
•  Is slope * x + intercept equal to (slope * x) +

intercept or slope * (x + intercept)?
41	

Operator Associativity

•  Single recursion in production rules

42	

<expr> -> <expr> - <expr> | const

✗ Ambiguous

<expr> -> <expr> - const | const

✓  Unambiguous

<expr> -> const - <expr> | const

✓  Unambiguous (less desirable)

9/26/17	

8	

Operator Precedence

•  Use stratification in production rules
– Intentionally put operators at different

levels of parse trees

43	

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

Improved Unambiguous Context-Free
Grammar

1. expr -> expr add_op term
 | term
2. term -> term mul_op factor | factor
3. factor -> id | number | -factor

 | (expr)
3. add_op -> + | -
4. mul_op -> * | /

44	

Revisit “slope * x + intercept”

•  Parse Tree

45	

expr

expr add_op term

+ factorterm

id(intercept)term mul_op factor

*factor

id(slope)

id(x)

Extended BNF (EBNF)

•  There are extensions of BNF to simplify
representation
– Kleene star * or {} to represent repetition

(0 or more)
– () to represent alternative parts
– [] to represent optional parts
•  id_list -> id (, id)*
•  proc_call -> id’(’[expr_list]’)’

46	

BNF and EBNF

•  BNF
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>

•  EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

47	

