
9/21/17	

1	

Expression Evaluation and
Control Flow

In Text: Chapter 6

Outline

•  Notation
•  Operator evaluation order
•  Operand evaluation order
•  Overloaded operators
•  Type conversions
•  Short-circuit evaluation of conditions
•  Control structures

2	N.	Meng,	S.	Arthur	

Arithmetic Expressions

•  Design issues for arithmetic expressions
– Notation form?
– What are the operator precedence rules?
– What are the operator associativity rules?
– What is the order of operand evaluation?
– Are there restrictions on operand evaluation

side effects?
– Does the language allow user-defined operator

overloading?
3	N.	Meng,	S.	Arthur	

Operators

•  A unary operator has one operand
•  A binary operator has two operands
•  A ternary operator has three

operands
•  Functions can be viewed as unary

operators with an operand of a simple
list

N.	Meng,	S.	Arthur	 4	

Operators

•  Argument lists (or parameter lists)
treat separators (comma, space) as
“stacking” or “append” operators

•  A keyword in a language statement can
be viewed as functions in which the
remainder of the statement is the
operand

N.	Meng,	S.	Arthur	 5	

Notation & Placement

•  Prefix
– op a b op(a,b) (op a b)

•  Infix
– a op b

•  Postfix
– a b op

N.	Meng,	S.	Arthur	 6	

9/21/17	

2	

Notation & Placement

•  Most imperative languages use infix
notation for binary and prefix for unary
operators

•  Lisp: prefix
– (op a b)

N.	Meng,	S.	Arthur	 7	

Operator Evaluation Order

•  Precedence
•  Associativity
•  Parentheses

N.	Meng,	S.	Arthur	 8	

Operator Precedence

•  Define the order in which “adjacent”
operators of different precedence
levels are evaluated
–  Parenthetical groups (...)
–  Exponentiation **
–  Mult & Div * , /
–  Add & Sub + , -
–  Assignment :=

•  Where to put the parentheses?
– E.g., A * B + C ** D / E - F

N.	Meng,	S.	Arthur	 9	

•  Only Fortran, Ruby, Visual Basic, and
Ada have the exponentiation operator.
In all four, exponentiation operator has
higher precedence than unary operators
– Where to place the parentheses in –A**B?

N.	Meng,	S.	Arthur	 10	

•  The precedence of the arithmetic
operators of Ruby and the C-based
languages (e.g., C, C++, Java, Python)
 Ruby C-Based Languages
Highest ** postfix ++, --
 unary +, - prefix ++, --, unary +, -
 *, /, % *, /, %
Lowest binary +, - binary +, -

N.	Meng,	S.	Arthur	 11	

Operator Associativity

•  Define the order in which adjacent
operators with the same precedence
level are evaluated:
– Left associative * , / , + , -
– Right associative ** (exponentiation)

•  Where to put the parentheses?
– E.g., B ** C ** D - E + F * G / H

N.	Meng,	S.	Arthur	 12	

9/21/17	

3	

Operator Associativity

•  EFFECTIVELY
– Most programming languages evaluate

expressions from left to right
– LISP uses parentheses to enforce

evaluation order
– APL is strictly RIGHT to LEFT, taking note

only of parenthetical groups

N.	Meng,	S.	Arthur	 13	

Operator Associativity

•  Associativity
– For some operators, the evaluation order

does not matter, i.e., (A + B) + C = A + (B + C)
•  However, in a computer when floating-

point numbers are represented
approximately, the mathematical
“associativity” does not always hold
– E.g., A = 200, B = Float.MIN_VALUE, C = -10

N.	Meng,	S.	Arthur	 14	

Parentheses

•  Programmers can alter the precedence
and associativity rules by placing
parentheses in expressions

•  A parenthesized part of an expression
has precedence over its adjacent peers
without parentheses

N.	Meng,	S.	Arthur	 15	

Parentheses

•  Advantages
– Allow programmers to specify any desired

order of evaluation
– Do not require author or reader of

programs to remember any precedence or
association rules

•  Disadvantages
– Can make writing expressions more tedious
– May seriously compromise code readability

N.	Meng,	S.	Arthur	 16	

•  Although we need parentheses in infix
expressions, we don’t need parentheses
in prefix and postfix expressions
– The operators are no longer ambiguous with

respect to the operands that they work on
in prefix and postfix expressions

N.	Meng,	S.	Arthur	 17	

Expression Conversion

Infix	Expression	 Prefix	Expression	 Pos.ix	Expression	
A+B	 +	A	B	 A	B	+	
A+B*C	 ?	 ?	
(A+B)*C	 ?	 ?	

N.	Meng,	S.	Arthur	 18	

9/21/17	

4	

A Motivating Example

•  What is the value of the following
expression?
3 10 + 4 5 - *

N.	Meng,	S.	Arthur	 19	

How do you automate the calculation
of a postfix expression ?

•  Assuming operators include:
Highest * /
Lowest binary + -

•  Input: a string of a postfix expression
•  Output: a value
•  Algorithm ?

N.	Meng,	S.	Arthur	 20	

Project 1

•  Create an evaluator for logical expressions
written in postfix notation

•  Assuming operators include:
Highest not “!” RIGHT associative
 and “&”
 not equal “/”, equal “=“
Lowest or “|”

N.	Meng,	S.	Arthur	 21	

LEFT associative

Operand Evaluation Order

•  If none of the operands of an operator
has side effects, then the operand
evaluation order does not matter

•  What are side effects ?
•  Referential transparency and side

effects

N.	Meng,	S.	Arthur	 22	

Side Effects

•  Often discussed in the context of
functions

•  A side effect is some permanent state
change caused by execution of functions

•  The subsequent computation is influenced
other than by the return value for use
– j = i++
– a = 10, b = a + fun(&a) (assume the function

can change its parameter value)
N.	Meng,	S.	Arthur	 23	

Side Effects

•  Many imperative languages distinguish
between
– expressions, which always produce values,

and may or may not have side effects, and
– statements, which are executed solely for

their side effects, and return no useful
value

•  Imperative programming is sometimes
called “computing via side effects”

N.	Meng,	S.	Arthur	 24	

9/21/17	

5	

Side Effects

•  Pure functional languages have no side
effects
– The value of an expression depends only on

the referencing environment in which the
expression is evaluated, not the time at
which the evaluation occurs
•  If an expression yields a certain value at one

point in time, it is guaranteed to yield the same
value at any point in time

N.	Meng,	S.	Arthur	 25	

How to avoid side effects ?

•  Design the language to disallow
functional side effects
– No pass-by-reference parameters in

functions
– Disallow global variable access in functions

•  Concerns
– Programmers need the flexibility to return

more than one value from a function
– Passing parameters is inefficient compared

with accessing global variables
N.	Meng,	S.	Arthur	 26	

How to avoid side effects ?

•  Design the language with a strictly fixed
evaluation order between operands

•  Concerns
– Disallow some optimizations which involve

reordering operand evaluations

N.	Meng,	S.	Arthur	 27	

Referential Transparency and Side
Effects

•  A program has the property of
referential transparency if any two
expressions having the same value can
be substituted for one another
E.g., result1 = (fun(a) + b) / (fun(a) – c); ó
 temp = fun(a);
 result2 = (temp + b) / (temp - c),
given that the function fun has no side
effect

N.	Meng,	S.	Arthur	 28	

Key points of referentially
transparent programs

•  Semantics is much easier to understand
– Being referentially transparent makes a

function equivalent to a mathematical
function

•  Programs written in pure functional
languages are referentially transparent

•  The value of a referentially transparent
function depends on its parameters, and
possibly one or more global constants

N.	Meng,	S.	Arthur	 29	

Overloaded Operators

•  The multiple use of an operator is called
operator overloading
– E.g., “+” is used to specify integer addition,

floating-point addition, and string catenation
•  Do not use the same symbol for two

completely unrelated operations, because
that can decrease readability
– In C, “&” can represent a bitwise AND

operator, and an address-of operator
N.	Meng,	S.	Arthur	 30	

9/21/17	

6	

Type Conversion

•  Narrowing conversion
– To convert a value to a type that cannot

store all values of the original type
– E.g., double->float, float->int

•  Widening conversion
– To convert a value to a type that can

include all values belong to the original type
– E.g., int->float, float->double

N.	Meng,	S.	Arthur	 31	

Narrowing Conversion vs. Widening
Conversion

•  Narrowing conversion are not always safe
– The magnitude of the converted value can be

changed
– E.g., float->int with 1.3E25, the converted

value is distantly related to the original one
•  Widening conversion is always safe
– However, some precision may be lost
– E.g., int->float, integers have at least 9

decimal digits of precision, while floats have
7 decimal digits of precision

32	

Implicit Type Conversion

•  A coercion is an implicit type conversion
•  Arithmetic expressions with operators

that can have differently typed
operands are called mixed-mode
expressions

•  Languages allowing such expressions
must define implicit operand type
conversions

N.	Meng,	S.	Arthur	 33	

Implicit Type Conversion

•  Implicit type conversion can be achieved
by narrowing or widening one or more
operators

•  It is better to widen when possible
– E.g., x = 3, z = 5.9, what is y’s value if x is

widened? How about z narrowed?

N.	Meng,	S.	Arthur	 34	

var	x,	y:	integer;	
							z:	real;	
							...	
y	:=	x	*	z;				/*	x	is	automaNcally	converted	to	“real”		*/	

Key Points of Implicit Coercions

•  They decrease the type error detection
ability of compilers
– Did you really mean to use “mixed-mode

expressions” ?
•  In most languages, all numeric types are

coerced in expressions, using widening
conversions

N.	Meng,	S.	Arthur	 35	

Explicit Type Conversion

•  Also called “casts”
•  Ada example
 FLOAT(INDEX)-- INDEX is an INTEGER
•  C example:
 (int) speed /* speed is a float */

N.	Meng,	S.	Arthur	 36	

9/21/17	

7	

Short-Circuit Evaluation

•  A short-circuit evaluation of an expression
is one in which the result is determined
without evaluating all of the operands and/or
operators
– Consider (a < b) && (b < c):
•  If a >= b, there is no point evaluating b < c

because (a < b) && (b < c) is automatically false

•  (x && y) ≡ if x then y else false
•  (x || y) ≡ if x then true else y

N.	Meng,	S.	Arthur	 37	

Short-Circuit Evaluation

•  Short-circuit evaluation may lead to
unexpected side effects and cause error
– E.g., (a > b) || ((b++) / 3)

•  C, C++, and Java:
– Use short-circuit evaluation for Boolean

operations (&& and ||)
– Also provide bitwise operators that are not
short circuit (& and |)

N.	Meng,	S.	Arthur	 38	

Short-Circuit Evaluation

•  Ada: programmers can specify either

 Non-SC eval SC eval
 (x or y) (x or else y)
 (x and y) (x and then y)

N.	Meng,	S.	Arthur	 39	

Control Structures

•  Selection
•  Iteration
– Iterators

•  Recursion
•  Concurrency & non-determinism
– Guarded commands

N.	Meng,	S.	Arthur	 40	

Iteration Based on Data Structures

•  A data-based iteration statement uses a
user-defined data structure and a user-
defined function to go through the
structure’s elements
– The function is called an iterator
– The iterator is invoked at the beginning of

each iteration
– Each time it is invoked, an element from

the data structure is returned
– Elements are returned in a particular order

N.	Meng,	S.	Arthur	 41	

A Java
Implementation
for Iterator

42	

9/21/17	

8	

Guarded Commands

•  New and quite different forms of
selection and loop structures were
suggested by Dijkstra (1975)

•  We cover guarded commands because
they are the basis for two linguistic
mechanisms developed later for
concurrent programming in two
languages: CSP and Ada

N.	Meng,	S.	Arthur	 43	

Motivations of Guarded Commands

•  To support a program design
methodology that ensures correctness
during development rather than relying
on verification or testing of completed
programs afterwards

•  Also useful for concurrency
•  Increased clarity in reasoning

N.	Meng,	S.	Arthur	 44	

Guarded Commands

•  Two guarded forms
– Selection (guarded if)
– Iteration (guarded do)

N.	Meng,	S.	Arthur	 45	

Guarded Selection

•  Sementics
– When this construct is reached
•  Evaluate all boolean expressions
•  If more than one is true, choose one

nondeterministically
•  If none is true, it is a runtime error

•  Idea: Forces one to consider all possibilities
N.	Meng,	S.	Arthur	 46	

if <boolean> -> <statement>
[] <boolean> -> <statement>
 ...
[] <boolean> -> <statement>
fi

An Example

•  If i = 0 and j > i, the construct chooses
nondeterministically between the first
and the third assignment statements

•  If i == j and i ≠ 0, none of the conditions
is true and a runtime error occurs

N.	Meng,	S.	Arthur	 47	

if i = 0 -> sum := sum + i
[] i > j -> sum := sum + j
[] j > i -> sum := sum + i
fi

Guarded Selection

•  The construction can be an elegant way
to state that the order of execution, in
some cases, is irrelevant

– E.g., if x == y, it does not matter which we
assign to max

– This is a form of abstraction provided by
the nondeterministic semantics

N.	Meng,	S.	Arthur	 48	

if x >= y -> max := x
[] y >= x -> max := y
fi

9/21/17	

9	

Guarded Iteration

•  Semantics:
– For each iteration
•  Evaluate all boolean expressions
•  If more than one is true, choose one

nondeterministically, and then start loop again
•  If none is true, exit the loop

•  Idea: if the order of evaluation is not
important, the program should not specify one

N.	Meng,	S.	Arthur	 49	

do <boolean> -> <statement>

[] <boolean> -> <statement>

 ...
[] <boolean> -> <statement>

od

An Example

•  Given four integer variables: q1, q2, q3,
and q4, rearrange the values so that
q1 ≤ q2 ≤ q3 ≤ q4

•  Without guarded iteration, one solution
is to put the values into an array, sort
the array, and then assigns the value
back to the four variables

N.	Meng,	S.	Arthur	 50	

do q1 > q2 -> temp := q1; q1 := q2; q2 := temp;

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp;

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp;
od

An Example

•  While the solution with guarded
iteration is not difficult, it requires a
good deal of code

•  There is considerably increased
complexity in the implementation of the
guarded commands over their
conventional deterministic counterparts

N.	Meng,	S.	Arthur	 51	

