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Expression Evaluation and 
Control Flow 

In Text: Chapter 6 

Outline 

•  Notation 
•  Operator evaluation order 
•  Operand evaluation order 
•  Overloaded operators 
•  Type conversions 
•  Short-circuit evaluation of conditions 
•  Control structures 
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Arithmetic Expressions 

•  Design issues for arithmetic expressions 
– Notation form? 
– What are the operator precedence rules? 
– What are the operator associativity rules? 
– What is the order of operand evaluation? 
– Are there restrictions on operand evaluation 

side effects? 
– Does the language allow user-defined operator 

overloading? 
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Operators 

•  A unary operator has one operand 
•  A binary operator has two operands 
•  A ternary operator has three 

operands 
•  Functions can be viewed as unary 

operators with an operand of a simple 
list 
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Operators 

•  Argument lists (or parameter lists) 
treat separators (comma, space) as 
“stacking” or “append” operators 

•  A keyword in a language statement can 
be viewed as functions in which the 
remainder of the statement is the 
operand 
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Notation & Placement 

•  Prefix 
– op a b  op(a,b)  (op a b) 

•  Infix 
– a op b 

•  Postfix 
– a b op 
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Notation & Placement 

•  Most imperative languages use infix 
notation for binary and prefix for unary 
operators 

•  Lisp: prefix 
– (op a b) 

N.	Meng,	S.	Arthur	 7	

Operator Evaluation Order  

•  Precedence  
•  Associativity 
•  Parentheses  
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Operator Precedence 

•  Define the order in which “adjacent” 
operators of different precedence 
levels are evaluated  
–   Parenthetical groups (...) 
–   Exponentiation   ** 
–   Mult & Div  * , / 
–   Add & Sub  + , - 
–   Assignment   := 

•  Where to put the parentheses? 
– E.g., A * B + C **  D / E - F 

N.	Meng,	S.	Arthur	 9	

•  Only Fortran, Ruby, Visual Basic, and 
Ada have the exponentiation operator. 
In all four, exponentiation operator has 
higher precedence than unary operators 
– Where to place the parentheses in –A**B? 
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•  The precedence of the arithmetic 
operators of Ruby and the C-based 
languages (e.g., C, C++, Java, Python) 
                    Ruby            C-Based Languages 
Highest        **               postfix ++, -- 
                    unary +, -    prefix ++, --, unary +, - 
                    *, /, %         *, /, % 
Lowest         binary +, -    binary +, - 
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Operator Associativity 

•  Define the order in which adjacent 
operators with the same precedence 
level are evaluated: 
– Left associative  * , / , + , - 
– Right associative ** (exponentiation) 

•  Where to put the parentheses? 
– E.g., B ** C ** D - E +  F * G / H 
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Operator Associativity 

•  EFFECTIVELY 
– Most programming languages evaluate 

expressions from left to right 
– LISP uses parentheses to enforce 

evaluation order 
– APL is strictly RIGHT to LEFT, taking note 

only of parenthetical groups 
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Operator Associativity 

•  Associativity 
– For some operators, the evaluation order 

does not matter, i.e., (A + B) + C = A + (B + C) 
•  However, in a computer when floating-

point numbers are represented 
approximately, the mathematical 
“associativity” does not always hold 
– E.g., A = 200, B = Float.MIN_VALUE, C = -10 
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Parentheses 

•  Programmers can alter the precedence 
and associativity rules by placing 
parentheses in expressions 

•  A parenthesized part of an expression 
has precedence over its adjacent peers 
without parentheses  
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Parentheses 

•  Advantages 
– Allow programmers to specify any desired 

order of evaluation  
– Do not require author or reader of 

programs to remember any precedence or 
association rules 

•  Disadvantages 
– Can make writing expressions more tedious 
– May seriously compromise code readability 
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•  Although we need parentheses in infix 
expressions, we don’t need parentheses 
in prefix and postfix expressions 
– The operators are no longer ambiguous with 

respect to the operands that they work on 
in prefix and postfix expressions  
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Expression Conversion 

Infix	Expression	 Prefix	Expression	 Pos.ix	Expression	
A+B	 +	A	B	 A	B	+	
A+B*C	 ?	 ?	
(A+B)*C	 ?	 ?	
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A Motivating Example 

•  What is the value of the following 
expression? 
3 10 + 4 5 - * 
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How do you automate the calculation 
of a postfix expression ? 

•  Assuming operators include: 
Highest   * / 
Lowest    binary + - 

•  Input: a string of a postfix expression 
•  Output: a value 
•  Algorithm ? 
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Project 1 

•  Create an evaluator for logical expressions 
written in postfix notation 

•  Assuming operators include: 
Highest  not “!”                         RIGHT associative 
                 and “&” 
                 not equal “/”, equal “=“ 
Lowest      or “|” 
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LEFT associative 

Operand Evaluation Order 

•  If none of the operands of an operator 
has side effects, then the operand 
evaluation order does not matter 

•  What are side effects ? 
•  Referential transparency and side 

effects 
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Side Effects 

•  Often discussed in the context of 
functions 

•  A side effect is some permanent state 
change caused by execution of functions 

•  The subsequent computation is influenced 
other than by the return value for use 
– j = i++ 
– a = 10, b = a + fun(&a) (assume the function 

can change its parameter value) 
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Side Effects 

•  Many imperative languages distinguish 
between  
– expressions, which always produce values, 

and may or may not have side effects, and  
– statements, which are executed solely for 

their side effects, and return no useful 
value 

•  Imperative programming is sometimes 
called “computing via side effects” 
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Side Effects 

•  Pure functional languages have no side 
effects 
– The value of an expression depends only on 

the referencing environment in which the 
expression is evaluated, not the time at 
which the evaluation occurs 
•  If an expression yields a certain value at one 

point in time, it is guaranteed to yield the same 
value at any point in time 
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How to avoid side effects ? 

•  Design the language to disallow 
functional side effects 
– No pass-by-reference parameters in 

functions 
– Disallow global variable access in functions 

•  Concerns 
– Programmers need the flexibility to return 

more than one value from a function 
– Passing parameters is inefficient compared 

with accessing global variables 
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How to avoid side effects ? 

•  Design the language with a strictly fixed 
evaluation order between operands 

•  Concerns 
– Disallow some optimizations which involve 

reordering operand evaluations 
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Referential Transparency and Side 
Effects 

•  A program has the property of 
referential transparency if any two 
expressions having the same value can 
be substituted for one another 
E.g., result1 = (fun(a) + b) / (fun(a) – c); ó 
       temp = fun(a); 
       result2 = (temp + b) / (temp - c), 
given that the function fun has no side 
effect 
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Key points of referentially 
transparent programs 

•  Semantics is much easier to understand 
– Being referentially transparent makes a 

function equivalent to a mathematical 
function 

•  Programs written in pure functional 
languages are referentially transparent  

•  The value of a referentially transparent 
function depends on its parameters, and 
possibly one or more global constants 

N.	Meng,	S.	Arthur	 29	

Overloaded Operators 

•  The multiple use of an operator is called 
operator overloading 
– E.g., “+” is used to specify integer addition, 

floating-point addition, and string catenation 
•  Do not use the same symbol for two 

completely unrelated operations, because 
that can decrease readability 
– In C, “&” can represent a bitwise AND 

operator, and an address-of operator 
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Type Conversion 

•  Narrowing conversion 
– To convert a value to a type that cannot 

store all values of the original type 
– E.g., double->float, float->int 

•  Widening conversion 
– To convert a value to a type that can 

include all values belong to the original type 
– E.g., int->float, float->double 
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Narrowing Conversion vs. Widening 
Conversion 

•  Narrowing conversion are not always safe 
– The magnitude of the converted value can be 

changed 
– E.g., float->int with 1.3E25, the converted 

value is distantly related to the original one 
•  Widening conversion is always safe 
– However, some precision may be lost 
– E.g., int->float, integers have at least 9 

decimal digits of precision, while floats have 
7 decimal digits of precision 

32	

Implicit Type Conversion 

•  A coercion is an implicit type conversion 
•  Arithmetic expressions with operators 

that can have differently typed 
operands are called mixed-mode 
expressions 

•  Languages allowing such expressions 
must define implicit operand type 
conversions 
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Implicit Type Conversion 

•  Implicit type conversion can be achieved 
by narrowing or widening one or more 
operators 

•  It is better to widen when possible 
– E.g., x = 3, z = 5.9, what is y’s value if x is 

widened? How about z narrowed? 
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var	x,	y:	integer;	
							z:	real;	
							...	
y	:=	x	*	z;				/*	x	is	automaNcally	converted	to	“real”		*/	

Key Points of Implicit Coercions 

•  They decrease the type error detection 
ability of compilers 
– Did you really mean to use “mixed-mode 

expressions” ? 
•  In most languages, all numeric types are 

coerced in expressions, using widening 
conversions 
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Explicit Type Conversion 

•  Also called “casts” 
•  Ada example 
   FLOAT(INDEX)-- INDEX is an INTEGER 
•  C example:  
   (int) speed /* speed is a float */ 
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Short-Circuit Evaluation 

•  A short-circuit evaluation of an expression 
is one in which the result is determined 
without evaluating all of the operands and/or 
operators 
– Consider (a < b) && (b < c): 
•  If a >= b, there is no point evaluating b < c   

because (a < b) && (b < c) is automatically false 

•  (x && y) ≡ if x then y else false 
•  (x || y)  ≡ if x then true else y 
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Short-Circuit Evaluation 

•  Short-circuit evaluation may lead to 
unexpected side effects and cause error 
– E.g., (a > b) || ((b++) / 3) 

•  C, C++, and Java: 
– Use short-circuit evaluation for Boolean 

operations (&& and ||) 
– Also provide bitwise operators that are not 
short circuit (& and |) 
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Short-Circuit Evaluation 

•  Ada: programmers can specify either 

 Non-SC eval  SC eval 
 (x or y)    ( x or else y ) 
 (x and y)   ( x and then y ) 
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Control Structures 

•  Selection 
•  Iteration 
– Iterators 

•  Recursion 
•  Concurrency & non-determinism 
– Guarded commands 
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Iteration Based on Data Structures 

•  A data-based iteration statement uses a 
user-defined data structure and a user-
defined function to go through the 
structure’s elements 
– The function is called an iterator 
– The iterator is invoked at the beginning of 

each iteration 
– Each time it is invoked, an element from 

the data structure is returned  
– Elements are returned in a particular order 
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A Java 
Implementation 
for Iterator 

42	
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Guarded Commands 

•  New and quite different forms of 
selection and loop structures were 
suggested by Dijkstra (1975) 

•  We cover guarded commands because 
they are the basis for two linguistic 
mechanisms developed later for 
concurrent programming in two 
languages: CSP and Ada 
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Motivations of Guarded Commands 

•  To support a program design 
methodology that ensures correctness 
during development rather than relying 
on verification or testing of completed 
programs afterwards 

•  Also useful for concurrency 
•  Increased clarity in reasoning 
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Guarded Commands 

•  Two guarded forms 
– Selection (guarded if) 
– Iteration (guarded do) 
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Guarded Selection 

•  Sementics 
– When this construct is reached 
•  Evaluate all boolean expressions  
•  If more than one is true, choose one 

nondeterministically 
•  If none is true, it is a runtime error 

•  Idea: Forces one to consider all possibilities 
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if <boolean> -> <statement> 
[] <boolean> -> <statement> 
     ... 
[] <boolean> -> <statement> 
fi 

An Example 

•  If i = 0 and j > i, the construct chooses 
nondeterministically between the first 
and the third assignment statements 

•  If i == j and i ≠ 0, none of the conditions 
is true and a runtime error occurs 
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if i = 0 -> sum := sum + i 
[] i > j -> sum := sum + j 
[] j > i -> sum := sum + i 
fi 

Guarded Selection 

•  The construction can be an elegant way 
to state that the order of execution, in 
some cases, is irrelevant 

– E.g., if x == y, it does not matter which we 
assign to max 

– This is a form of abstraction provided by 
the nondeterministic semantics 
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if x >= y -> max := x 
[] y >= x -> max := y 
fi 
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Guarded Iteration 

•  Semantics:  
– For each iteration 
•  Evaluate all boolean expressions 
•  If more than one is true, choose one 

nondeterministically, and then start loop again 
•  If none is true, exit the loop 

•  Idea: if the order of evaluation is not 
important, the program should not specify one 
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do <boolean> -> <statement> 

[]  <boolean> -> <statement> 

      ... 
[]  <boolean> -> <statement> 

od 

An Example 

•  Given four integer variables: q1, q2, q3, 
and q4, rearrange the values so that  
q1 ≤ q2 ≤ q3 ≤ q4 

•  Without guarded iteration, one solution 
is to put the values into an array, sort 
the array, and then assigns the value 
back to the four variables 
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do q1 > q2 -> temp := q1; q1 := q2; q2 := temp; 

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp; 

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp; 
od 

An Example 

•  While the solution with guarded 
iteration is not difficult, it requires a 
good deal of code 

•  There is considerably increased 
complexity in the implementation of the 
guarded commands over their 
conventional deterministic counterparts 
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