Expression Evaluation and
Control Flow

In Text: Chapter 6

9/21/17

Outline

* Notation

* Operator evaluation order

* Operand evaluation order

* Overloaded operators

+ Type conversions

« Short-circuit evaluation of conditions
Control structures

Arithmetic Expressions

+ Design issues for arithmetic expressions
— Notation form?
— What are the operator precedence rules?
— What are the operator associativity rules?
— What is the order of operand evaluation?

— Are there restrictions on operand evaluation
side effects?

— Does the language allow user-defined operator
overloading?

Operators

* A unary operator has one operand
* A binary operator has two operands

* A ternary operator has three
operands
* Functions can be viewed as unary

operators with an operand of a simple
list

Operators

Argument lists (or parameter lists)
treat separators (comma, space) as
"stacking” or "append" operators

* A keyword in a language statement can
be viewed as functions in which the
remainder of the statement is the
operand

Notation & Placement

* Prefix

—op a b op(a,b) (op a b)
* Infix

—a op b
* Postfix

—a b op

Notation & Placement

+ Most imperative languages use infix
notation for binary and prefix for unary
operators

* Lisp: prefix
—(opab)

9/21/17

Operator Evaluation Order

* Precedence
* Associativity
* Parentheses

Operator Precedence

« Define the order in which “adjacent”
operators of different precedence
levels are evaluated

— Parenthetical groups (...)

— Exponentiation *x

- Mult &Div >,/

— Add&Sub +, -

— Assignment =

Where to put the parentheses?
~Eg,A*B+C* D/E-F

* Only Fortran, Ruby, Visual Basic, and
Ada have the exponentiation operator.
Inall four, exponentiation operator has
higher precedence than unary operators
— Where to place the parentheses in ~-A**B?

+ The precedence of the arithmetic
operators of Ruby and the C-based
languages (e.g., C, C++, Java, Python)

Ruby C-Based Languages
Highest *x postfix ++, --
unary +, - prefix ++, --, unary +, -
* /. % * /. %
Lowest binary +, - binary +, -

Operator Associativity

+ Define the order in which adjacent
operators with the same precedence
level are evaluated:

— Left associative *,/ ,+, -
—Right associative ** (exponentiation)

* Where to put the parentheses?
-Eg.B**C*™*D-E+ F*G/H

Operator Associativity

+ EFFECTIVELY
— Most programming languages evaluate
expressions from left to right
— LISP uses parentheses to enforce
evaluation order

— APL is strictly RIGHT to LEFT, taking note
only of parenthetical groups

9/21/17

Operator Associativity

* Associativity
— For some operators, the evaluation order
does not matter,ie., (A+B)+C=A+(B+C)
* However, in a computer when floating-
point humbers are represented
approximately, the mathematical
“associativity” does not always hold
—E.g.,, A=200, B = Float.MIN_VALUE, C = -10

Parentheses

* Programmers can alter the precedence
and associativity rules by placing
parentheses in expressions

* A parenthesized part of an expression

has precedence over its adjacent peers
without parentheses

Parentheses

+ Advantages
— Allow programmers to specify any desired
order of evaluation
— Do not require author or reader of

programs to remember any precedence or
association rules

« Disadvantages

— Can make writing expressions more tedious
— May seriously compromise code readability

+ Although we need parentheses in infix
expressions, we don't need parentheses
in prefix and postfix expressions
— The operators are no longer ambiguous with

respect to the operands that they work on
in prefix and postfix expressions

Expression Conversion

Infix Expression Prefix Expression | Postfix Expression
A+B +AB AB+
A+B*C ? ?
(A+B)*C ? ?

A Motivating Example

* What is the value of the following
expression?
310+45-*

Project 1

* Create an evaluator for logical expressions
written in postfix notation
+ Assuming operators include:
Highest not "I
and "&" }
not equal */", equal "=" LEFT associative]
Lowest or"|"

RIGHT associative

9/21/17

How do you automate the calculation
of a postfix expression ?
*+ Assuming operators include:
Highest */
Lowest binary + -
* Input: a string of a postfix expression
+ Output: a value
* Algorithm ?

Operand Evaluation Order

« If none of the operands of an operator
has side effects, then the operand
evaluation order does not matter

* What are side effects ?

* Referential transparency and side
effects

Side Effects

+ Often discussed in the context of
functions
+ A side effect is some permanent state
change caused by execution of functions
*+ The subsequent computation is influenced
other than by the return value for use
—j =+
—a=10, b = a + fun(&a) (assume the function
can change its parameter value)

Side Effects

* Many imperative languages distinguish
between
— expressions, which always produce values,
and may or may not have side effects, and
— statements, which are executed solely for
their side effects, and return no useful
value
* Imperative programming is sometimes
called “computing via side effects”

Side Effects

* Pure functional languages have no side
effects

— The value of an expression depends only on
the referencing environment in which the
expression is evaluated, not the time at
which the evaluation occurs

« If an expression yields a certain value at one

point in time, it is guaranteed to yield the same
value at any point in time

9/21/17

How to avoid side effects ?

« Design the language to disallow
functional side effects

—No pass-by-reference parameters in
functions

— Disallow global variable access in functions
* Concerns

—Programmers need the flexibility to return
more than one value from a function

— Passing parameters is inefficient compared
with accessing global variables

How to avoid side effects ?

« Design the language with a strictly fixed
evaluation order between operands

» Concerns

— Disallow some optimizations which involve
reordering operand evaluations

Referential Transparency and Side
Effects

* A program has the property of
referential transparency if any two
expressions having the same value can
be substituted for one another
E.g., resultl = (fun(a) + b) / (fun(a) - ¢); &

temp = fun(a);

result2 = (temp + b) / (temp - ¢),
given that the function fun has no side
effect

Key points of referentially
transparent programs

+ Semantics is much easier to understand
— Being referentially transparent makes a
function equivalent to a mathematical
function
* Programs written in pure functional
languages are referentially tfransparent
* The value of a referentially tfransparent
function depends on its parameters, and
possibly one or more global constants

Overloaded Operators

* The multiple use of an operator is called
operator overloading
—E.g., "+" is used to specify integer addition,
floating-point addition, and string catenation
* Do not use the same symbol for two
completely unrelated operations, because
that can decrease readability

—InC,"&" can represent a bitwise AND
operator, and an address-of operator

Type Conversion

* Narrowing conversion

— To convert a value to a type that cannot
store all values of the original type

—E.g., double->float, float->int
Widening conversion

— To convert a value to a type that can
include all values belong to the original type

—E.g., int->float, float->double

9/21/17

Narrowing Conversion vs. Widening
Conversion

Narrowing conversion are not always safe

— The magnitude of the converted value can be
changed

—E.g., float->int with 1.3E25, the converted
value is distantly related to the original one

Widening conversion is always safe

—However, some precision may be lost

—E.g., int->float, integers have at least 9
decimal digits of precision, while floats have
7 decimal digits of precision

Implicit Type Conversion

* A coercion is an implicit type conversion
Arithmetic expressions with operators
that can have differently typed
operands are called mixed-mode
expressions

Languages allowing such expressions
must define implicit operand type
conversions

Implicit Type Conversion

var x, y: integer;

y:=x*z; /*xisautomatically converted to “real” */

z: real;

+ Implicit type conversion can be achieved

by narrowing or widening one or more
operators

* It is better fo widen when possible

—E.g..x=3,2=509, what is y's value if x is
widened? How about z narrowed?

Key Points of Implicit Coercions

* They decrease the type error detection
ability of compilers
— Did you really mean to use “mixed-mode
expressions” ?
* In most languages, all numeric types are
coerced in expressions, using widening
conversions

Explicit Type Conversion

* Also called “casts”
+ Ada example

FLOAT(INDEX)-- INDEX is an INTEGER

+ C example:

(int) speed /* speed is a float */

Short-Circuit Evaluation

* A short-circuit evaluation of an expression
is one in which the result is determined
without evaluating all of the operands and/or
operators
—Consider (a < b) && (b < c):

* If a >= b, there is no point evaluatingb < ¢
because (a < b) && (b < c) is automatically false

* (x &&y) =if x theny else false
« (x|l y) = if x then true else y

N.M

9/21/17

Short-Circuit Evaluation

+ Short-circuit evaluation may lead to
unexpected side effects and cause error
-Eg., (@>b) || ((b++)/ 3)

« C, C++,and Java:

— Use short-circuit evaluation for Boolean
operations (&& and ||)

— Also provide bitwise operators that are not
short circuit (& and |)

Short-Circuit Evaluation

*+ Ada: programmers can specify either

Non-SC eval SC eval
(xory) (xorelsey)
(x and y) (xand theny)

Control Structures

« Selection

* Tteration
— Iterators

* Recursion

+ Concurrency & non-determinism
— Guarded commands

Iteration Based on Data Structures

* A data-based iteration statement uses a
user-defined data structure and a user-
defined function to go through the
structure's elements
— The function is called an iterator

— The iterator is invoked at the beginning of
each iteration

— Each time it is invoked, an element from
the data structure is returned

— Elements are returned in a particular order

N.M

Class Binlree<I> implements Iterable<I> {

A Java

BinTree<T> right;

Implementation ™
for‘ ITer‘GTOr‘ // other methods: insert, delete, lookup, ...

public Iterator<T> iterator() {
return new Treelterator(this);
}
private class Treelterator implements Iterator<T> {
private Stack<BinTree<T>> s = new Stack<BinTree<T>>();
Treelterator (BinTree<T> n) {
if (n.val != null) s.push(n);
}
public boolean hasNext() {
return !s.empty();
}
public T next() {
if (thasNext()) throw new NoSuchElementException()
BinTree<T> n = 5.pop();
if (n.right != null) s.push(n.right);
if (n.left != null) s.push(n.left);
return n.val;
}
public void remove() {
throw new UnsupportedOperationException();
}
}
b

9/21/17

Guarded Commands

* New and quite different forms of
selection and loop structures were
suggested by Dijkstra (1975)

» We cover guarded commands because
they are the basis for two linguistic
mechanisms developed later for
concurrent programming in two
languages: CSP and Ada

Motivations of Guarded Commands

* To support a program design
methodology that ensures correctness
during development rather than relying
on verification or testing of completed
programs afterwards

* Also useful for concurrency
* Increased clarity in reasoning

Guarded Commands

+ Two guarded forms
— Selection (guarded if)
— Iteration (guarded do)

Guarded Selection

if <boolean> -> <statement>
[1 <boolean> -> <statement>

[] <boolean> -> <statement>
fi
+ Sementics
— When this construct is reached
+ Evaluate all boolean expressions

« If more than one is true, choose one
nondeterministically

« If none is true, it is a runtime error
+ Idea: Forces one to consider all possibilities

An Example
if i =0 -> sum := sum + i
[T]i>3->sum :=sum+ j
[13>1i->sum:=sum+ i
fi

« Ifi=0and j > i, the construct chooses
nondeterministically between the first
and the third assignment statements

« Ifi==jand i # O, none of the conditions
is true and a runtime error occurs

Guarded Selection

* The construction can be an elegant way
to state that the order of execution, in
some cases, is irrelevant

if x >= y -> max := x

[Ty>=Xx->max :=y

fi

—E.g., if x ==y, it does not matter which we
assign to max

— This is a form of abstraction provided by
the nondeterministic semantics

Guarded Iteration

do <boolean> -> <statement>
[1 <boolean> -> <statement>

- Semantics: [] <boolean> -> <statement>
od

—For each iteration
+ Evaluate all boolean expressions

« If more than one is true, choose one
nondeterministically, and then start loop again

* If none is true, exit the loop
» Idea: if the order of evaluation is not
important, the program should not specify one

9/21/17

An Example
do gl > g2 -> temp := ql; ql := g2; g2 := temp;
[1 92 > g3 -> temp := g2; g2 := q3; g3 := temp;
[1 93 > g4 -> temp := qg3; g3 := q4; g4 := temp;

od

« Given four integer variables: q1, g2, q3,
and g4, rearrange the values so that
ql<q2<q3<q4

« Without guarded iteration, one solution
is to put the values into an array, sort
the array, and then assigns the value
back to the four variables

An Example

+ While the solution with guarded
iteration is not difficult, it requires a
good deal of code

* There is considerably increased
complexity in the implementation of the
guarded commands over their
conventional deterministic counterparts

