
8/27/17	

1	

CS-3304 Introduction

In Text: Chapter 1 & 2
COURSE DESCRIPTION

2	

What will you learn?

•  Survey of programming paradigms,
including representative languages

•  Language definition and description
methods

•  Overview of features across all
languages

•  Implementation strategies

3	

Semester Outline

•  Introduction and Language Evaluation
•  History and Evolution
•  Syntax and Semantics
•  Names, Typing, and Scoping
•  Expressions and Assignment
•  Control Structures
•  Subprograms
•  Functional Programming
•  Logic Programming

4	

Websites

•  Course homepage: lecture notes and
schedules

http://courses.cs.vt.edu/cs3304/fall17/

•  Canvas website: assignments, grades,

and announcements
https://canvas.vt.edu/courses/56037

5	

INTRODUCTION TO
PROGRAMMING LANGUAGES

6	

8/27/17	

2	

Overview

•  Why study programming languages?
•  What types of programming languages

are there?
•  What are language implementation

methods?
•  What is the process of compilation?

7	

WHY STUDY PROGRAMMING
LANGUAGES?

8	

Why are there so many PLs?

•  Evolution: people have learned better
ways of doing things over time

•  Socio-economic factors: proprietary
interests, commercial advantage

•  Orientation towards special purposes
•  Orientation towards special hardware
•  Diverse ideas about what is pleasant to

use

9	

What makes a language successful?

•  Expressive power (C, Algol-68, Perl)
– Easy to express things
– Although every language is Turing complete,

language features have huge impact
– We will focus on factors contributing to

expressive power in the course
•  Ease of use (Pascal, Java, Python)
– Easy to learn

10	

•  Ease of implementation (BASIC, Forth)
– The languages can be implemented/installed

on tiny machines
•  Standardization (ANSI C)
– To ensure portability of code cross

platforms
•  Open source (C)
– With at least one open-source compiler or

interpreter
11	

•  Excellent compilers (Fortran, Common
Lisp)
– Possible to compile to very good (fast/

small) code
•  Economics, Patronage, and Inertia
– The backing of a powerful sponsor
– E.g., COBOL and Ada by DoD, PL/1 by IBM

12	

8/27/17	

3	

Why study PLs?

•  1. Make it easier to learn new languages
– Some languages are similar; easy to walk

down family tree
•  E.g., from Java to C#, from Pascal to C

13	

•  2. Simulate useful features in languages
that lack them
– Certain useful features are missing in some

languages, but can be emulated by following
a deliberate programming style
•  E.g., Older dialects of Fortran lack suitable

control structures, so programmers can use
comments and self-discipline to write well-
structured code

14	

•  3. Choose among alternative ways to
express things based on the knowledge
of implementation costs/performance
overhead

•  Use simple arithmetic equivalents (use x*x
instead of x^2)

•  Avoid call by value with large data items in
Pascal

•  Manual vs. automatic memory management

15	

•  4. Make better use of language
technology whenever it appears
– The code to parse, analyze, generate,

optimize, and otherwise manipulate
structured data can be found in almost any
sophisticated program

– Programmers with a strong grasp of the
language technology will be able to write
better structured and maintainable code

16	

•  5. Get prepared to design new languages
or extend existing languages
– Easy-to-use
– Easy-to-learn
– Easy-code-to-maintain
– … …

17	

A Story: ALGOL 60 vs. Fortran

•  ALGOL 60 (Backus et al., 1963) was
more elegant and had much better
control statements than Fortran
(McCracken, 1961)

•  ALGOL 60 failed to displace Fortran
– Poor understanding of the new language
– No appreciation on the benefits of block

structures, recursion, and various control
structures

18	

8/27/17	

4	

OVERVIEW OF
PROGRAMMING LANGUAGES

19	

Influences on Language Design

•  Computer Architecture
•  Programming Design Methodologies

20	

The von Neumann Architecture

21	

The von Neumann Architecture

•  Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter
repeat forever
 fetch the instruction pointed by the counter

 increment the counter

 decode the instruction

 execute the instruction
end repeat

22	

Programming Design Methodologies

•  1950s and early 1960s
– Simple applications
– Worry about machine efficiency and

hardware cost

23	

Programming Design Methodologies

•  Late 1960s: hardware costs decreased
and programmer costs increased
– Large and complex applications
– People efficiency became important
– Readability: better control structures
•  structured programming
•  top-down design and step-wise refinement

24	

8/27/17	

5	

Programming Design Methodologies

•  Late 1970s: Process-oriented to data-
oriented
– Data abstraction: using abstract data types

•  Middle 1980s: Object-oriented
programming
– Data abstraction + inheritance +

polymorphism

25	

The PL spectrum

•  Declarative
– Functional Lisp/Scheme, ML, Haskell
– Dataflow Id, Val
– Logic, constraint-based Prolog, SQL

•  Imperative
– von Neumann C, Ada, Fortran
– Object-oriented Smalltalk, Eiffel, Java
– Scripting Perl, Python, PHP

26	

Declarative vs. Imperative

•  “High-level” vs. “Low-level”
•  Programmers specify “what should be

done” or “steps to do it”
•  An example (C#): choose all odd

numbers in a collection

27	

List<int> results = new List<int>();
foreach(var num in collection)
{
 if (num % 2 != 0)
 results.Add(num);
}

var results =
collection.Where(num => num %
2 != 0);

Functional Languages

•  Employ a computational model based on
recursive definition of functions

•  Take inspiration from the lambda
calculus
– A program is considered as a function from

inputs to outputs, defined in terms of
simpler functions through a process of
refinements

•  We will talk a lot about these languages
28	

Dataflow Languages

•  Model computation as the flow of
information (tokens) among primitive
functional nodes

•  Provide an inherently parallel model:
– Nodes are triggered by the arrival of input

tokens, and can operate concurrently

29	

Logic or Constraint-Based Languages

•  Take inspiration from predicate logic
•  Model computation as an attempt to find

values that satisfy certain specified
relationships, using goal-directed search
through a list of logical rules

30	

8/27/17	

6	

von Neumann Languages

•  Most familiar and widely used
•  The basic means of computation is the

modification of variables

31	

Object-oriented Languages

•  Closely related to the von Neumann
languages

•  Have a much more structured and
distributed model of both memory and
computation

•  Picture computation as interactions
among semi-independent objects, each
of which has both its own internal state
and subroutines to manage that state

32	

Scripting Languages

•  Emphasize coordinating or “gluing
together” components drawn from some
surrounding context

•  Support scripts, programs written for a
special run-time environment that
automate the execution of tasks, which
could alternatively be executed one-by-
one by a human creator

33	

