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CS-3304 Introduction 

In Text: Chapter 1 & 2 
COURSE DESCRIPTION 
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What will you learn? 

•  Survey of programming paradigms, 
including representative languages 

•  Language definition and description 
methods 

•  Overview of features across all 
languages 

•  Implementation strategies 
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Semester Outline 

•  Introduction and Language Evaluation 
•  History and Evolution 
•  Syntax and Semantics 
•  Names, Typing, and Scoping 
•  Expressions and Assignment 
•  Control Structures 
•  Subprograms 
•  Functional Programming 
•  Logic Programming 
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Websites 

•  Course homepage: lecture notes and 
schedules 

http://courses.cs.vt.edu/cs3304/fall17/ 
 
•  Canvas website: assignments, grades, 

and announcements 
https://canvas.vt.edu/courses/56037 
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INTRODUCTION TO 
PROGRAMMING LANGUAGES 
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Overview 

•  Why study programming languages? 
•  What types of programming languages 

are there? 
•  What are language implementation 

methods? 
•  What is the process of compilation? 
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WHY STUDY PROGRAMMING 
LANGUAGES? 
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Why are there so many PLs?  

•  Evolution: people have learned better 
ways of doing things over time 

•  Socio-economic factors: proprietary 
interests, commercial advantage 

•  Orientation towards special purposes 
•  Orientation towards special hardware 
•  Diverse ideas about what is pleasant to 

use 
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What makes a language successful? 

•  Expressive power (C, Algol-68, Perl) 
– Easy to express things 
– Although every language is Turing complete, 

language features have huge impact 
– We will focus on factors contributing to 

expressive power in the course 
•  Ease of use (Pascal, Java, Python) 
– Easy to learn 
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•  Ease of implementation (BASIC, Forth) 
– The languages can be implemented/installed 

on tiny machines 
•  Standardization (ANSI C) 
– To ensure portability of code cross 

platforms  
•  Open source (C) 
– With at least one open-source compiler or 

interpreter 
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•  Excellent compilers (Fortran, Common 
Lisp) 
– Possible to compile to very good (fast/

small) code 
•  Economics, Patronage, and Inertia 
– The backing of a powerful sponsor 
– E.g., COBOL  and Ada by DoD, PL/1 by IBM 
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Why study PLs? 

•  1. Make it easier to learn new languages  
– Some languages are similar; easy to walk 

down family tree 
•  E.g., from Java to C#, from Pascal to C 
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•  2. Simulate useful features in languages 
that lack them 
– Certain useful features are missing in some 

languages, but can be emulated by following 
a deliberate programming style 
•  E.g., Older dialects of Fortran lack suitable 

control structures, so programmers can use 
comments and self-discipline to write well-
structured code 
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•  3. Choose among alternative ways to 
express things based on the knowledge 
of implementation costs/performance 
overhead 

•  Use simple arithmetic equivalents (use x*x 
instead of x^2) 

•  Avoid call by value with large data items in 
Pascal 

•  Manual vs. automatic memory management 
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•  4. Make better use of language 
technology whenever it appears 
– The code to parse, analyze, generate, 

optimize, and otherwise manipulate 
structured data can be found in almost any 
sophisticated program 

– Programmers with a strong grasp of the 
language technology will be able to write 
better structured and maintainable code 
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•  5. Get prepared to design new languages 
or extend existing languages 
– Easy-to-use 
– Easy-to-learn 
– Easy-code-to-maintain 
– … … 
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A Story: ALGOL 60 vs. Fortran 

•  ALGOL 60 (Backus et al., 1963) was 
more elegant and had much better 
control statements than Fortran 
(McCracken, 1961) 

•  ALGOL 60 failed to displace Fortran 
– Poor understanding of the new language 
– No appreciation on the benefits of block 

structures, recursion, and various control 
structures 
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OVERVIEW OF 
PROGRAMMING LANGUAGES 
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Influences on Language Design 

•  Computer Architecture 
•  Programming Design Methodologies 
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The von Neumann Architecture 
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The von Neumann Architecture 

•  Fetch-execute-cycle (on a von Neumann 
architecture computer) 

initialize the program counter 
repeat forever 
 fetch the instruction pointed by the counter 

 increment the counter 

 decode the instruction 

 execute the instruction 
end repeat 
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Programming Design Methodologies 

•  1950s and early 1960s 
– Simple applications 
– Worry about machine efficiency and 

hardware cost 
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Programming Design Methodologies 

•  Late 1960s: hardware costs decreased 
and programmer costs increased 
– Large and complex applications 
– People efficiency became important 
– Readability: better control structures 
•  structured programming 
•  top-down design and step-wise refinement 
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Programming Design Methodologies 

•  Late 1970s: Process-oriented to data-
oriented 
– Data abstraction: using abstract data types 

•  Middle 1980s: Object-oriented 
programming 
– Data abstraction + inheritance + 

polymorphism 
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The PL spectrum 

•  Declarative 
– Functional    Lisp/Scheme, ML, Haskell 
– Dataflow    Id, Val 
– Logic, constraint-based  Prolog, SQL 

•  Imperative 
– von Neumann   C, Ada, Fortran 
– Object-oriented  Smalltalk, Eiffel, Java 
– Scripting    Perl, Python, PHP 
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Declarative vs. Imperative 

•  “High-level” vs. “Low-level” 
•  Programmers specify “what should be 

done” or “steps to do it” 
•  An example (C#): choose all odd 

numbers in a collection 
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List<int> results = new List<int>(); 
foreach(var num in collection) 
{ 
    if (num % 2 != 0) 
          results.Add(num); 
} 

var results = 
collection.Where( num => num % 
2 != 0); 
 
 
 

Functional Languages 

•  Employ a computational model based on 
recursive definition of functions 

•  Take inspiration from the lambda 
calculus  
– A program is considered as a function from 

inputs to outputs, defined in terms of 
simpler functions through a process of 
refinements 

•  We will talk a lot about these languages 
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Dataflow Languages 

•  Model computation as the flow of 
information (tokens) among primitive 
functional nodes 

•  Provide an inherently parallel model: 
– Nodes are triggered by the arrival of input 

tokens, and can operate concurrently 

29	

Logic or Constraint-Based Languages 

•  Take inspiration from predicate logic 
•  Model computation as an attempt to find 

values that satisfy certain specified 
relationships, using goal-directed search 
through a list of logical rules 
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von Neumann Languages 

•  Most familiar and widely used 
•  The basic means of computation is the 

modification of variables 
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Object-oriented Languages 

•  Closely related to the von Neumann 
languages 

•  Have a much more structured and 
distributed model of both memory and 
computation 

•  Picture computation as interactions 
among semi-independent objects, each 
of which has both its own internal state 
and subroutines to manage that state 
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Scripting Languages 

•  Emphasize coordinating or “gluing 
together” components drawn from some 
surrounding context 

•  Support scripts, programs written for a 
special run-time environment that 
automate the execution of tasks, which 
could alternatively be executed one-by-
one by a human creator 
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