
9/20/16	

1	

Type Bindings

•  Two key issues in binding (or
associating) a type to an identifier:
– How is type binding specified?
– When does the type binding take place?

N.	
 Meng,	
 S.	
 Arthur	
 1	

Static Type Binding

•  An explicit declaration is a program
statement that lists variable names and
specifies their types
– var x: int
– Advantage: safer, cheaper
– Disadvantage: less flexible

N.	
 Meng,	
 S.	
 Arthur	
 2	

9/20/16	

2	

Static Type Binding

•  An implicit declaration is a means of
associating variables with types through
default conventions, rather than
declaration statements
– First use of variable: X := 1.2;
•  X is a float and will not change afterwards

N.	
 Meng,	
 S.	
 Arthur	
 3	

Static Type Binding

– Default rules
•  In Fortran, if an undeclared identifier begins

with one of the letters I, J, K, L, M, or N, or
their lower case versions, it is implicitly
declared to be Integer type

– Advantage: convenience
– Disadvantage: reliability

N.	
 Meng,	
 S.	
 Arthur	
 4	

9/20/16	

3	

Dynamic Type Binding

•  The type of a variable is not specified by a
declaration statement, nor can it be
determined by the spelling of its name

•  Instead, the variable is bound to a type
when it is assigned a value in an assignment
statement
– E.g., list = [10. 2, 3.5]; (JavaScript)
– Regardless of its previous type, list has the

new type of single-dimension array of length 2
N.	
 Meng,	
 S.	
 Arthur	
 5	

Dynamic Type Binding

•  Advantage
– flexibility (can change type dynamically)

•  Disadvantage
– Type error detection by the compiler is

difficult
– High cost
•  Type checking must be done at runtime
•  Every variable must have a runtime descriptor to

maintain the current type
•  The storage used for the value of a variable must

be of varying size
N.	
 Meng,	
 S.	
 Arthur	
 6	

9/20/16	

4	

Dynamic Type Binding

•  Type Inference (ML, Miranda, and Haskell)
– Rather than by assignment statement, types

are determined from the context of the
reference

N.	
 Meng,	
 S.	
 Arthur	
 7	

Type Checking

•  Type checking is the activity of ensuring
that the operands of an operator are of
compatible types
– The definition can be generalized to include
•  Subprograms (argument types, return type), and
•  Assignments

N.	
 Meng,	
 S.	
 Arthur	
 8	

9/20/16	

5	

Type Checking

•  A compatible type is one that
–  is legal for the operator, or
–  is allowed under language rules to be

implicitly converted to a legal type
•  The automatic conversion is called (implicit)

coercion
•  Mixed mode arithmetic (2 + 3.5)

N.	
 Meng,	
 S.	
 Arthur	
 9	

Type Error

•  A type error is the application of an
operator to an operand of an inappropriate
type
– 1.5 + “Just say NO! to UVA”

N.	
 Meng,	
 S.	
 Arthur	
 10	

9/20/16	

6	

Type Checking

•  If all bindings of variables to types are
static in a language, then type checking
can nearly always be done statically

•  Dynamic type binding requires type
checking at runtime, which is called
dynamic type checking
– Dynamic type binding only allows dynamic

type checking

N.	
 Meng,	
 S.	
 Arthur	
 11	

Type Checking

•  Type checking is complicated when a
language allows a memory cell to store
values of different types at different
times during execution
– E.g., C and C++ unions
– In such cases, type checking must be dynamic

•  Even though all variables are statically
bound to types, not all type errors can be
detected by static type checking

N.	
 Meng,	
 S.	
 Arthur	
 12	

9/20/16	

7	

Type Checking

•  It is better to detect errors at compile
time than at runtime
– The earlier correction is usually less costly

•  Penalty for static checking
– Reduced programmer flexibility
– Fewer shortcuts and tricks are possible

N.	
 Meng,	
 S.	
 Arthur	
 13	

Strong Typing

•  A programming language is strongly
typed if type errors are always
detected

•  Advantages of strong typing
– Ability to detect all misuses of variables

that result in type errors

N.	
 Meng,	
 S.	
 Arthur	
 14	

9/20/16	

8	

Language Comparison for Strong Typing

•  FORTRAN 95 is not strongly typed
– the use of Equivalence between variables

of different types allows a variable of one
type to refer to a value of a different
type

•  C and C++ are not strongly typed
– Both include union types, which are not

type checked

N.	
 Meng,	
 S.	
 Arthur	
 15	

Language Comparison for Strong Typing

•  Ada, Java, and C# are almost strongly
typed
– It allows programmers to breach the type-

checking rules by specially requesting that
type checking be suspended for a particular
type conversion

•  ML is strongly typed

N.	
 Meng,	
 S.	
 Arthur	
 16	

9/20/16	

9	

Coercion Rules
•  Coercion rules can weaken strong typing
– E.g., int a = 3, b = 5;

 float d = 4.5;
– If a developer meant to type a + b, but

mistakenly typed a + d, the error would not
be detected by the compiler due to coercion

•  Languages with more coercion are less
reliable than those with little coercion
– Reliability comparison
•  Fortran/C/C++ < Ada
•  C++ < Java/C#

N.	
 Meng,	
 S.	
 Arthur	
 17	

Type Compatibility

•  The rules dictate the type of operands
that are acceptable for each operator
and thereby specify the possible type
errors of the language

•  Type rules are called compatibility
because in some cases, the type of an
operand can be implicitly converted by
the compiler or runtime system to make
it acceptable to the operator

N.	
 Meng,	
 S.	
 Arthur	
 18	

9/20/16	

10	

Type Equivalence

•  A strict form of type compatibility—
compatibility without coercion

•  Two approaches to defining type
equivalence
– Name type equivalence (Type equivalence by

name)
– Structure type equivalence (Type equivalence

by structure)

N.	
 Meng,	
 S.	
 Arthur	
 19	

Name Type Equivalence

•  Two variables have equivalent types if
they are defined in the same
declaration or in declarations using the
same type name
– Ex. 1, int a, b;
– Ex. 2, int a; int b;

N.	
 Meng,	
 S.	
 Arthur	
 20	

9/20/16	

11	

Name Type Equivalence
•  Easy to implement but is more

restrictive
– In Ada

•  The type of count is a subrange of the integers,
which is not equivalent to the integer type
•  The two variables cannot be assigned to each

other

type Indextype is 1..100;
count : Integer;
index: IndexType;

N.	
 Meng,	
 S.	
 Arthur	
 21	

Name Type Equivalence

– In Pascal

•  Although J and X have the same type structure,
they are considered as two types
•  Y cannot be passed as a valid parameter to call K

Type X: array[1..5] of integer
Y: X;
Procedure K(J: array[1..5] of integer
…
K(Y) /* Y incompatible with J */

N.	
 Meng,	
 S.	
 Arthur	
 22	

9/20/16	

12	

Structure Type Equivalence

•  Two variables have equivalent types if
their types have identical structures
– Ex 1., type celsius = float;

 fahrenheit = float;
– The two types are considered equivalent

N.	
 Meng,	
 S.	
 Arthur	
 23	

Structure Type Equivalence

•  More flexible, but harder to implement
– The entire structures of two types must be

compared
•  Developers are not allowed to

differentiate between types with the
same structure

N.	
 Meng,	
 S.	
 Arthur	
 24	

9/20/16	

13	

Scope

•  The scope of a variable is the range of
statements over which its declaration is
visible

•  A variable is visible in a statement if it
can be referenced in that statement

•  The nonlocal variables of a program unit
or block are those that are visible but
not declared in the unit

•  Global versus nonlocal

N.	
 Meng,	
 S.	
 Arthur	
 25	

Scope

•  The scope rules of a language determine
how a particular occurrence of a name is
associated with a variable

•  They determine how references to
variables declared outside the currently
executing subprogram or block are
associated with their declarations

•  Two types of scope
– Static/lexical scope
– Dynamic scope

N.	
 Meng,	
 S.	
 Arthur	
 26	

9/20/16	

14	

Static Scope

•  The scope of a variable can be statically
determined, that is, prior to execution

•  Two categories of static-scoped
languages
– Languages allowing nested subprograms:

Ada, JavaScript, and PHP
– Languages which does not allow

subprograms: C-based languages

N.	
 Meng,	
 S.	
 Arthur	
 27	

Static Scope

•  To connect a name reference to a
variable, you must find the appropriate
declaration

•  Search process
1.  search the declaration locally
2.  If not found, search the next-larger

enclosing unit
3.  Loop over step 2 until a declaration is

found or an undeclared variable error is
detected

N.	
 Meng,	
 S.	
 Arthur	
 28	

9/20/16	

15	

Static Scope

•  Given a subprogram Sub1,
– the subprogram that declared Sub1 is

called its static parent
– the static parent of Sub1, its static parent,

and so forth up to and including the largest
enclosing subprogram, are called static
ancestors of Sub1

N.	
 Meng,	
 S.	
 Arthur	
 29	

An Example (Ada)
1. procedure Big is
2. X : Integer;
3. procedure Sub1 is
4. X: Integer;
5. begin -- of Sub1
6. …
7. end; -- of Sub1
8. procedure Sub2 is
9. begin -- of Sub2
10. … X …
11. end; -- of Sub2
12. begin -- of Big
13. …
14. end; -- of Big

•  Which declaration
does X in line 10 refer
to?

N.	
 Meng,	
 S.	
 Arthur	
 30	

9/20/16	

16	

Variable Hiding

•  Variables can be hidden from a unit by
having a “closer” variable with the same
name
– “Closer” means more immediate enclosing

scope
– C++ and Ada allow access to the “hidden”

variables (using fully qualified names)
•  scope.name

•  Blocks can be used to create new static
scopes inside subprograms

N.	
 Meng,	
 S.	
 Arthur	
 31	

Dynamic Scope

•  Dynamic scoping is based on the calling
sequence of subprograms, not on their
spatial relationship to each other

•  Dynamic scope can be determined only
at runtime

•  Always used in interpreted languages,
which usually does not have type
checking at compile time

N.	
 Meng,	
 S.	
 Arthur	
 32	

9/20/16	

17	

An Example (Common Lisp) [2]

(defvar x 3) ; declare dynamic scoping with “defvar”
(defun foo () x)
(let ((x 4)) (foo)) ; returns 4

(setq x 3) ; declare lexical scoping with “setq”
(defun foo () x)
(let ((x 4)) (foo)) ; returns 3

When foo goes to find the value of x,
•  it initially finds the lexical value defined at the

top level (“setq x 3” or “defvar x 3”)
•  it checks if the variable is dynamic
–  If it is, then foo looks to the calling environment,

and uses 4 as x value N.	
 Meng,	
 S.	
 Arthur	
 33	

Static vs. Dynamic Scoping
Static scoping Dynamic scoping

Advantages 1. Readability
2. Locality of
reasoning
3. Less runtime
overhead

Some extra
convenience
(minimal parameter
passing)

Disadvantages Less flexibility 1. Loss of
readability
2. Unpredictable
behavior
3. More runtime
overhead N.	
 Meng,	
 S.	
 Arthur	
 34	

9/20/16	

18	

Scope and Lifetime

•  The scope and lifetime of a variable
appear to be related
– The scope defines how a name is associated

with a variable
– The lifetime of a variable is the time during

which the variable is bound to a specific
memory location

N.	
 Meng,	
 S.	
 Arthur	
 35	

Scope and Lifetime

•  Consider a variable v declared in a Java
method that contains no method calls
– The scope of v is from its declaration to

the end of the method
– The lifetime of v begins when the method is

entered and ends when execution of the
method terminates

– The scope and lifetime seem to be related

N.	
 Meng,	
 S.	
 Arthur	
 36	

9/20/16	

19	

Scope and Lifetime

•  In C and C++, a variable is declared in a
function using the specifier static
– The scope is static and local to the function
– The lifetime extends over the entire

execution of the program of which it is a
part

•  Static scope is a textual and spatial
concept, while lifetime is a temporal
concept

N.	
 Meng,	
 S.	
 Arthur	
 37	

Another Example
void printheader() {
 …
}
void compute() {
 int sum;
 …
 printheader();
}

What is the static scope
of sum?
What is the lifetime of
sum?

N.	
 Meng,	
 S.	
 Arthur	
 38	

9/20/16	

20	

Referencing Environments

•  Referencing environments of a
statement is the collection of all
variables that are visible in the
statement

N.	
 Meng,	
 S.	
 Arthur	
 39	

Referencing environments in static-
scoped languages

•  The variables declared in the local scope
plus the collection of all variables of its
ancestor scopes that are visible,
excluding variables in nonlocal scopes
that are hidden by declarations in
nearer procedures

N.	
 Meng,	
 S.	
 Arthur	
 40	

9/20/16	

21	

An Example
1. procedure Example is
2. A, B : Integer;
3. … ß-------------------------1
4.  procedure Sub1 is
5.  X, Y: Integer;
6.  begin -- of Sub1
7.  … ß----------------2
8. end; -- of Sub1
9. procedure Sub2 is
10.  X: Integer;
11.  begin -- of Sub2
12. … ß----------------3
13. end; -- of Sub2
14. begin -- of Example
15. … ß-----------------------4
16. end; -- of Example

What are the
referencing
environments of the
indicated program
points?
Point RE
 1. A and B of Example
 2. A and B of Example, X and

 Y of Sub1
 3.
 4.

N.	
 Meng,	
 S.	
 Arthur	
 41	

Referencing environments in
dynamic-scoped languages

•  A subprogram is active if its execution
has begun but has not yet terminated

•  The referencing environments of a
statement in a dynamically scoped
language is the locally declared
variables, plus the variables of all other
subprograms that are currently active
– Some variables in active previous

subprograms can be hidden by variables
with the same names in recent ones

N.	
 Meng,	
 S.	
 Arthur	
 42	

9/20/16	

22	

An Example

What are the
referencing
environments of the
indicated program
points?

1. void sub1() {
2. int a, b;
3.  … ß-------------------------1
4. } /* end of sub1 */
5. void sub2() {
6.  int b, c;
7.  … ß-------------------2
8. sub1();
9. } /* end of sub2 */
10.void main() {
11. int c, d;
12. … ß----------------3
13.  sub2();
14.} /* end of main */

N.	
 Meng,	
 S.	
 Arthur	
 43	

The meaning of names within a scope

•  Within a scope,
– Two or more names that refer to the same

object at the same program point are called
aliases
•  E.g., int a =3; int* p = &a, q = &a;

– A name that can refer to more than one
object at a given point is considered
overloaded
•  E.g., print_num(){…}, print_num(int n){…}
•  E.g., complex + complex, complex + float

N.	
 Meng,	
 S.	
 Arthur	
 44	

9/20/16	

23	

Reference

[1] Robert W. Sebesta, Concepts of
Programming Languages, 8th edition, pg.
201-240
[2] Dynamic and Lexical variables in
Common Lisp,
http://stackoverflow.com/questions/
463463/dynamic-and-lexical-variables-in-
common-lisp

N.	
 Meng,	
 S.	
 Arthur	
 45	

Can be a test question
 program foo;
 var x: integer;

 procedure f;
 begin
 print(x);
 end f;

 procedure g;
 var x: integer;
 begin
 x := 2;
 f;
 end g;

 begin
 x := 1;
 g;

 end foo.

What value is printed?

Evaluate with static scoping:
 x = 1

Evaluate with dynamic
scoping:
 x = 2

N.	
 Meng,	
 S.	
 Arthur	
 46	

