Name, Scope, and Binding

In Text: Chapter 3

Outline [1]

Variable

Binding

— Storage bindings and lifetime
— Type bindings

Type Checking

Scope

Lifetime vs. Scope
Referencing Environments

N. Meng, S. Arthur

9/15/16



Variable

* A program variable is an abstraction of
a memory cell or a collection of cells

« It has several attributes

—Name: A mnemonic character string

— Address
* Points to location memory
* May vary dynamically
— Type
* Range of values + legal operations

* E.g., int type in Java specifies a value range of
-2147483648 to 21473647, and arithmetic
operations for +, =% /.. %

Variable

« Scope
— Range over which the variable is visible
— Static/dynamic

« Lifetime

— Time during which the variable is bound to a
specific location

9/15/16



Binding

« A binding is an association between two
things, such as a name and the thing it
names

« Binding time is the time at which a
binding takes place

Possible Binding Time

* Language design time
— Bind operator symbols to operations
* Language implementation time
— Bind floating point type to a representation
« Compile time
— Bind a variable to a type in C or Java
* Load time
— Bind a variable to a memory cell (C static variable)
* Runtime

— Bind a nonstatic local variable to a memory cell
(method variables)

9/15/16



9/15/16

An Example

count = count + 5

« count is a local variable
— When is the type of count bound?
— When is + bound to addition?
— When the value of count is bound?

Static and Dynamic Binding

* A binding is static if it occurs before
run tfime and remains unchanged
throughout program execution

* A binding is dynamic if it occurs during
execution or can change during
execution of the program




An Example of Dynamic Binding

* In JavaScript and PHP,
list = [10.2, 3.5];

list = 47;

Static and Dynamic Binding

* As binding time gets earlier:
— execution efficiency goes up
— safety goes up
— flexibility goes down

« Compiled languages tend to have early
binding times

* Interpreted languages tend to have later
bindings

9/15/16



ONE CANNOT OVERSTATE THE
IMPORTANCE OF BINDING TIMES IN
PROGRAMMING LANGUAGES

Storage Bindings and Lifetime

 Allocation

— Getting a memory cell from a pool of available
memory to bind to a variable

e Deallocation

— Putting a memory cell that has been unbound
from a variable back into the pool

e Lifetime

— The lifetime of a variable is the time during
which it is bound to a particular memory cell

9/15/16



9/15/16

Lifetime

* If an object's memory binding outlives
its access binding, we get garbage

« If an object's access binding outlives its
memory binding, we get a dangling
reference

Storage Allocation Mechanism

« Static allocation
« Stack-based allocation
* Heap allocation

* Variable lifetime begins at allocation, and
ends at deallocation either by the
program or garbage collector




Static Allocation

 Static memory allocation is the allocation
of memory at compile time before the
associated program is executed

« When the program is loaded into memory,
static variables are stored in the data
segment of the program’'s address space

* The lifetime of static variables exists
throughout program execution
—E.g., static int q;

N. Meng, S. Arthur 15

Stack-based Allocation

Ep —=
procedure C
L ] D E
Subroutine D L Arguments
- to called procedure B
ip—= routines if ... then B else C
procedura A
ZIN Temporaries B ]
—— main program
Subroutine C A
N Local
variables
Direction of stack
srowth (usually Sy Miscellaneous
lower addresses) Subroutine B R bookkeeping
. <« fp (when subroutine
e sty . C is running)
Subroutine B . | Return address £
Subroutine A
Subroutine N. Meng, S. Arthur 16
Main

9/15/16



A More General Representation

Local variables

Parameters T

Dynamic link Stack top

Return address

Stack-based Allocation

* The location of local variables and
parameters can be defined as negative
offsets relative to the base of the frame
(fp), or positive offsets relative to sp

* The displacement addressing mechanism
allows such addition to be specified
implicitly as part of an ordinary load or
store instruction

* Variable lifetime exists through the
declared method

9/15/16



Heap-based Allocation

* Heap
— A region of storage in which subblocks can
be allocated and deallocated at arbitrary
time
* Heap space management

— Different strategies achieve different
trade-offs between speed and space

Garbage Collection Algorithms

 Reference Counting

— Keep a count of how many times you are
referencing a resource (e.g., an object in
memory), and reclaim the space when the
count is zero

— It cannot handle cyclic structures

— It causes very high overhead o maintain
counters

9/15/16

10



9/15/16

Garbage Collection Algorithms

* Mark-Sweep

— Periodically marks all live objects
transitively, and sweeps over all memory
and disposes of garbage

— Entire heap has to be iterated over

— Many long-lived objects are iterated over
and over again, which is tfime-consuming

Garbage Collection Algorithms

* Mark-Compact

— Mark live objects, and move all live objects
into free space to make live space compact

— It takes even longer time than mark-sweep
due to object movement

11



Garbage Collection Algorithms

* Copying
— It uses two memory spaces, and each time
only uses one space to allocate memory,
when the space is used up, copy all live
objects to the other space

— Each time only half space is used

Garbage Collection Algorithms

* Generational Garbage Collection

— Studies show that
* most objects live for very short time
* the older an object is, the more likely it is to

live quite long
« Concentrate on collections of young
objects, and move surviving objects to
older generations, which are collected
less frequently

9/15/16

12



Space Concern

* Fragmentation

— The phenomenon in which storage space is
used inefficiently

— E.g., although in total 6K memory is available,

there is not a 4K contiguous block available,
which can cause allocation to fail

Space Concern

* Internal fragmentation

— Allocates a block that is larger than required
to hold a given object

— E.g., Since memory can be provided in chunks
divisible by 4, 8, or 16, when a program
requests 23 bytes, it will actually gets 32
bytes

« External fragmentation

— Free memory is separated into small blocks,
and the ability to meet allocation requests
degrades over time

9/15/16

13



