
9/15/16	

1	

Name, Scope, and Binding

In Text: Chapter 3

Outline [1]

•  Variable
•  Binding
– Storage bindings and lifetime
– Type bindings

•  Type Checking
•  Scope
•  Lifetime vs. Scope
•  Referencing Environments

N.	 Meng,	 S.	 Arthur	 2	

9/15/16	

2	

Variable
•  A program variable is an abstraction of

a memory cell or a collection of cells
•  It has several attributes
– Name: A mnemonic character string
– Address
•  Points to location memory
•  May vary dynamically

– Type
•  Range of values + legal operations
•  E.g., int type in Java specifies a value range of

-2147483648 to 21473647, and arithmetic
operations for +, -, *, /, % N.	 Meng,	 S.	 Arthur	 3	

Variable

•  Scope
– Range over which the variable is visible
– Static/dynamic

•  Lifetime
– Time during which the variable is bound to a

specific location

N.	 Meng,	 S.	 Arthur	 4	

9/15/16	

3	

Binding

•  A binding is an association between two
things, such as a name and the thing it
names

•  Binding time is the time at which a
binding takes place

N.	 Meng,	 S.	 Arthur	 5	

Possible Binding Time
•  Language design time
– Bind operator symbols to operations

•  Language implementation time
– Bind floating point type to a representation

•  Compile time
– Bind a variable to a type in C or Java

•  Load time
– Bind a variable to a memory cell (C static variable)

•  Runtime
– Bind a nonstatic local variable to a memory cell

(method variables) N.	 Meng,	 S.	 Arthur	 6	

9/15/16	

4	

An Example

 count = count + 5
•  count is a local variable
– When is the type of count bound?
– When is + bound to addition?
– When the value of count is bound?

N.	 Meng,	 S.	 Arthur	 7	

Static and Dynamic Binding

•  A binding is static if it occurs before
run time and remains unchanged
throughout program execution

•  A binding is dynamic if it occurs during
execution or can change during
execution of the program

N.	 Meng,	 S.	 Arthur	 8	

9/15/16	

5	

An Example of Dynamic Binding

•  In JavaScript and PHP,
 list = [10.2, 3.5];
 … …
 list = 47;

N.	 Meng,	 S.	 Arthur	 9	

Static and Dynamic Binding

•  As binding time gets earlier:
– execution efficiency goes up
– safety goes up
– flexibility goes down

•  Compiled languages tend to have early
binding times

•  Interpreted languages tend to have later
bindings

N.	 Meng,	 S.	 Arthur	 10	

9/15/16	

6	

ONE CANNOT OVERSTATE THE
IMPORTANCE OF BINDING TIMES IN

PROGRAMMING LANGUAGES

N.	 Meng,	 S.	 Arthur	 11	

Storage Bindings and Lifetime

•  Allocation
– Getting a memory cell from a pool of available

memory to bind to a variable
•  Deallocation
– Putting a memory cell that has been unbound

from a variable back into the pool
•  Lifetime
– The lifetime of a variable is the time during

which it is bound to a particular memory cell
N.	 Meng,	 S.	 Arthur	 12	

9/15/16	

7	

Lifetime

•  If an object’s memory binding outlives
its access binding, we get garbage

•  If an object’s access binding outlives its
memory binding, we get a dangling
reference

N.	 Meng,	 S.	 Arthur	 13	

Storage Allocation Mechanism

•  Static allocation
•  Stack-based allocation
•  Heap allocation
•  Variable lifetime begins at allocation, and

ends at deallocation either by the
program or garbage collector

N.	 Meng,	 S.	 Arthur	 14	

9/15/16	

8	

Static Allocation

•  Static memory allocation is the allocation
of memory at compile time before the
associated program is executed

•  When the program is loaded into memory,
static variables are stored in the data
segment of the program’s address space

•  The lifetime of static variables exists
throughout program execution
– E.g., static int a;

N.	 Meng,	 S.	 Arthur	 15	

Stack-based Allocation

N.	 Meng,	 S.	 Arthur	 16	 Subrou<ne	
Main	

9/15/16	

9	

A More General Representation

N.	 Meng,	 S.	 Arthur	 17	

Stack-based Allocation

•  The location of local variables and
parameters can be defined as negative
offsets relative to the base of the frame
(fp), or positive offsets relative to sp

•  The displacement addressing mechanism
allows such addition to be specified
implicitly as part of an ordinary load or
store instruction

•  Variable lifetime exists through the
declared method

N.	 Meng,	 S.	 Arthur	 18	

9/15/16	

10	

Heap-based Allocation

•  Heap
– A region of storage in which subblocks can

be allocated and deallocated at arbitrary
time

•  Heap space management
– Different strategies achieve different

trade-offs between speed and space

N.	 Meng,	 S.	 Arthur	 19	

Garbage Collection Algorithms

•  Reference Counting
– Keep a count of how many times you are

referencing a resource (e.g., an object in
memory), and reclaim the space when the
count is zero

– It cannot handle cyclic structures
– It causes very high overhead to maintain

counters

N.	 Meng,	 S.	 Arthur	 20	

9/15/16	

11	

Garbage Collection Algorithms

•  Mark-Sweep
– Periodically marks all live objects

transitively, and sweeps over all memory
and disposes of garbage

– Entire heap has to be iterated over
– Many long-lived objects are iterated over

and over again, which is time-consuming

N.	 Meng,	 S.	 Arthur	 21	

Garbage Collection Algorithms

•  Mark-Compact
– Mark live objects, and move all live objects

into free space to make live space compact
– It takes even longer time than mark-sweep

due to object movement

N.	 Meng,	 S.	 Arthur	 22	

9/15/16	

12	

Garbage Collection Algorithms

•  Copying
– It uses two memory spaces, and each time

only uses one space to allocate memory,
when the space is used up, copy all live
objects to the other space

– Each time only half space is used

N.	 Meng,	 S.	 Arthur	 23	

Garbage Collection Algorithms

•  Generational Garbage Collection
– Studies show that
•  most objects live for very short time
•  the older an object is, the more likely it is to

live quite long

•  Concentrate on collections of young
objects, and move surviving objects to
older generations, which are collected
less frequently

N.	 Meng,	 S.	 Arthur	 24	

9/15/16	

13	

Space Concern

•  Fragmentation
– The phenomenon in which storage space is

used inefficiently
– E.g., although in total 6K memory is available,

there is not a 4K contiguous block available,
which can cause allocation to fail

N.	 Meng,	 S.	 Arthur	 25	

Space Concern
•  Internal fragmentation
– Allocates a block that is larger than required

to hold a given object
– E.g., Since memory can be provided in chunks

divisible by 4, 8, or 16, when a program
requests 23 bytes, it will actually gets 32
bytes

•  External fragmentation
– Free memory is separated into small blocks,

and the ability to meet allocation requests
degrades over time N.	 Meng,	 S.	 Arthur	 26	

