
10/1/16	

1	

Revisit the example

ε-closure(0)={0, 1, 2, 4, 7} = A
Trans(A, a) = {1, 2, 3, 4, 6, 7, 8} = B
Trans(A, b) = {1, 2, 4, 5, 6, 7} = C
Trans(B, a) = {1, 2, 3, 4, 6, 7, 8} = B
Trans(B, b) = {1, 2, 4, 5, 6, 7, 9} = D
Trans(C, a) = {1, 2, 3, 4, 6, 7, 8} = B
Trans(C, b) = {1, 2, 4, 5, 6, 7} = C
Trans(D, a) = {1, 2, 3, 4, 6, 7, 8} = B
Trans(D, b) = {1, 2, 4, 5, 6, 7, 10} = E (mark as end state because 10

 is included)
Trans(E, a) = {1, 2, 3, 4, 6, 7, 8} = B
Trans(E, b) = {1, 2, 4, 5, 6, 7} = C

1	

Start

a b b ε ε
ε a ε

ε b ε 0 1
2 3

4 5
6 7 8 9 10

ε

ε

Transformed DFA

2	

Start

A B C D E a
b

a

b

a
b

a

b

a

b

10/1/16	

2	

Minimizing the DFA

•  Insight
– Identify equivalent state sets if all states

have the same transitions
– Merge equivalent states as a new state in

the refined DFA

3	

Minimizing the DFA

Initially partition the state set into two groups:
 (1) Group I: the states with only final states,

and
(2) Group II: the states with only non-final
states

for each group G do
 partition G into subgroups such that for any

states s and t in G, for all input symbols, they
have transitions to states in the same group

 replace G with identified subgroups
4	

10/1/16	

3	

Revisit the example

State Input symbol
a b

A B C
B B D
C B C
D B E
E B C

5	

Initially, two partitions:
G1 = {E}, G2 = {A, B, C, D}
G1 cannot be further partitioned
Trans(G2, a) = {B} G2
Trans(G2, b) = {C, D, E}, the resulting set
does not belong to the same group
partition G2 into {A, B, C}=G3, {D}=G4
Trans(G3, a) = {B} G3
Trans(G3, b) = {C, D}, the resulting set
does not belong to the same group
Partition G3 into {A, C} = G5, {B} = G6
Trans(G5, a) = {B} = G6
Trans(G5, b) = {C} G5
Therefore, the resulting partition is:
{A, C}, {B}, {D}, {E}

⊆

⊆

⊆

Refined DFA

6	

Start

S0 S2 S3 ba b

a
b

a

b

S1
a

10/1/16	

4	

State Transition Diagram (DFA)

7	

Start id
Le-er	

Le-er/Digit	

int_lit

Digit	

Digit	

Constructing the Lexical Analysis

•  Convenient utility subprograms:
– getChar - gets the next character of

input, puts it in nextChar, determines its
class and puts the class in charClass

– addChar - puts the character from
nextChar into the place the token is being
accumulated: nextToken

8	

10/1/16	

5	

Implementation Pseudo-code
static TOKEN nextToken;

static CHAR_CLASS charClass;

void lex() {
 getChar();
 switch (charClass) {
 case LETTER:
 addChar();
 getChar();
 while (charClass == LETTER || charClass ==

DIGIT)
 {
 addChar();
 getChar();
 }
 return; //nextToken = ID 9	

Implementation (Cont’d)
…
case DIGIT:
 addChar();
 getChar();
 while (charClass == DIGIT) {
 addChar();
 getChar();
 }
 return;//nextToken = INT_LIT
default: report error();
 } /* End of switch */
} /* End of function lex */

10	

10/1/16	

6	

Key Points about Scanner

•  Nearly universal rule
– Always take the longest possible token from

the input
•  foobar is never parsed to foo or fooba

•  Regular expressions “generate” a regular
language, while DFAs “recognize” it

11	

Parser

•  By analogy to RE and DFAs, a context-
free grammar (CFG) is a generator for a
context-free language, while a parser is
a language recognizer

•  Responsibilities
– Generate a parse tree, report syntax

errors if any

12	

10/1/16	

7	

Two Classes of Grammars

•  Left-to-right, Leftmost derivation (LL)
•  Left-to-right, Rightmost derivation (LR)
•  We can build parsers for these

grammars that run in linear time

13	

Grammar Comparison

14	

LL LR
E -> T E’
E’ -> + T E’ | ε
T -> F T’
T’ -> * F T’ | ε
F -> id

E -> E + T | T
T -> T * F | F
F -> id

10/1/16	

8	

Two Categories of Parsers
•  LL(1) Parsers
– L: scanning the input from left to right
– L: producing a leftmost derivation
– 1: using one input symbol of lookahead at each

step to make parsing action decisions
•  LR(1) Parsers
– L: scanning the input from left to right
– R: producing a rightmost derivation in
reverse

– 1: the same as above

15	

Two Categories of Parsers

•  LL(1) parsers (predicative parsers)
– Top down
•  Build the parse tree from the root
•  Find a left most derivation for an input string

•  LR(1) parsers (shift-reduce parsers)
– Bottom up
•  Build the parse tree from leaves
•  Reducing a string to the start symbol of a

grammar

16	

10/1/16	

9	

Top-down parsing algorithms

•  Recursive predictive parsing
– Recursive-descent parsing

•  Non-recursive predictive parsing
– LL(1): Table-driven parsing

17	

Motivating Example

•  Consider the grammar
 S -> cAd
 A -> ab | a

•  Input string: w = cad
•  How to build a parse tree top-down?

18	

10/1/16	

10	

Recursive-Descent Parsing

•  Initially create a tree containing a
single node S (the start symbol)

•  Apply the S-rule to see whether
the first token matches
– If matches, expand the tree
•  Apply the A-rule to the leftmost

nonterminal A
– Since the first token matches both

alternatives (A1 and A2), randomly pick one
(e.g., A1) to apply

19	

S

c A d

S

c A d

a b

Recursive-Descent Parsing
– Since the third token d does not match b, report

failure and go back to A to try another
alternative

–  Rollback to the state before applying A1 rule,
and then apply the alternative rule

–  The third token matches, so parsing is
successfully done

20	

S

c A d

a b

S

c A d

✖	

a

10/1/16	

11	

Recursive-Descent Parsing Algorithm
Suppose we have a scanner which generates the next token as needed.
Given a string, the parsing process starts with the start symbol rule:
if there is only one RHS then

 for each terminal in the RHS
 compare it with the next input token
 if they match, then continue
 else report an error
 for each nonterminal in the RHS

 call its corresponding subprogram and try match
 if no match is found, then report an error
else // there is more than one RHS

 choose the RHS based on the next input token (the lookahead)
 for each chosen RHS
 call the corresponding subprogram and try match
 if no match is found, then report an error 21	

Constructing Parser

•  Utility program
– match(…) sees what it expects to see, and

do corresponding processing

22	

10/1/16	

12	

An Example (one RHS)
/* Function expr Parses strings in the language

generated by the rule:
<expr> → <term> {(+ | -) <term>} */

void expr() {
/* Parse the first term */
 term();

/* As long as the next token is + or -, call lex to

get the next token, and parse the next term */

 while (nextToken == PLUS_CODE ||
 nextToken == MINUS_CODE){
 lex();

 term();
 }
}

23	

Another Example (multiple RHS)
/* Function factor Parses strings in the
language generated by the rule:

 <factor> -> id | (<expr>) */
 void factor() {
 if (nextToken == ID_CODE) {
 lex();
 }
 else if (nextToken == LEFT_PAREN_CODE) {
 lex();
 expr();
 if (nextToken == RIGHT_PAREN_CODE) {
 lex();

 }
 else
 error();
 }
 else error(); /* Neither RHS matches */
 }

24	

10/1/16	

13	

Key points about recursive-descent
parsing

•  Recursive-descent parsing may require
backtracking

•  LL(1) does not allow backtracking
– By only looking at the next input token, we

can always precisely decide which rule to
apply

•  By carefully designing a grammar, i.e.,
LL(1) grammar, we can avoid backtracking

25	

Two Obstacles to LL(1)-ness

•  Left recursion
– E.g., id_list -> id_list_prefix ;

 id_list_prefix -> id_list_prefix, id | id
– When the next token is id, which rule

should we apply?
•  Common prefixes
– E.g., A -> ab | a
– When the next token is a, which rule should

we apply?

26	

10/1/16	

14	

LL(1) Grammar

•  Grammar which can be processed with
LL(1) parser

•  Non-LL grammar can be converted to
LL(1) grammar via:
– Left-recursion elimination
– Left factoring by extracting common

prefixes

27	

Left-Recursion Elimination

•  Replace left-recursion with right-
recursion
 id_list -> id_list_prefix ;
 id_list_prefix -> id_list_prefix, id | id
 =>
 id_list -> id id_list_tail
 id_list_tail -> ; | , id id_list_tail

28	

10/1/16	

15	

Left Factoring

•  Extract the common prefixes, and
introduce new nonterminals as needed
 A -> ab | a
 =>
 A -> aB
 B -> b | ε

29	

Non-LL Languages
•  Simply eliminating left recursion and

common prefixes is not guaranteed to make
LL(1)

•  An example in Pascal:
stmt -> if condition then_clause else_clause
 | other_stmt
then_clause -> then stmt
else_clause -> else stmt | ε

•  How to parse “if C1 then if C2 then S1 else S2” ?

30	

10/1/16	

16	

Non-LL Languages

•  Define “disambiguating rule”, use it
together with ambiguous grammar to
parse top-down
– E.g., in the case of a conflict between two

possible productions, the one to use is the
one that occurs first, textually in the
grammar

– to pair the else with the nearest then
•  “Disambiguating rule” can be also

defined for bottom-up parsing
31	

