
9/6/16	

1	

Motivating Example

•  Token set:
–  assign -> :=
–  plus -> +
– minus -> -
–  times -> *
– div -> /
–  lparen -> (
–  rparen ->)
–  id -> letter(letter|digit)*
–  number -> digit digit*|digit*(.digit|digit.)digit*

1	

Motivating Example

•  What are the lexemes in the string
“a_var := b * 3” ?

•  What are the corresponding tokens ?
•  How do you identify the tokens?

2	

9/6/16	

2	

1. read characters one at a time (e.g., cur_char) with one look-ahead
 character lh_char
2. if cur_char is one of the one-character tokens {() [] < > , ; =
 + -} then return the token
3. if cur_char is ‘:’, check lh_char
 if lh_char is ‘=’, then return token “:=”
 else report error
3. if cur_char is a digit,
 then read any additional digits with at most one ‘.’ and return number
 else report error
4. if cur_char is a letter,
 then read any additional letters and digits and return id
… …

3	

A naïve scanner algorithm

Pictorial representation of the
scanner as a finite automaton

4	

•  This is a
deterministic
finite automaton
(DFA)

9/6/16	

3	

Can we automate the scanner
implementation?

•  Yes. A scanner generator tool can
generate the implementation from
regular expressions with four steps
– Convert regular expressions to

Nondeterministic Finite Automata (NFA)
– Convert NFA to Deterministic Finite

Automata (DFA)
– Minimize the DFA
– Implement DFA as switch statements

5	

Finite Automaton (FA)

•  A simple idealized machine to recognize
patterns in character sequences

•  Its job is to accept or reject an input
depending on whether the pattern
defined by the FA occurs in the input

6	

9/6/16	

4	

Revisit the Example

•  Can an FA M accept a string w?
– The machine starts in the start state
– Given each character of w, the machine will

transition from state to state according to
predefined transition rules

– M accepts w if the last input of w causes the
machine to halt properly. Otherwise, it is said
that M rejects w.

7	

Finite Automaton & Regular Expression

•  They have equivalent expressive power
– For every regular expression RE, there is a

corresponding FA that accepts the set of
strings generated by RE

– For every FA, there is a corresponding RE
that generates the set of strings accepted
by FA

8	

9/6/16	

5	

Two types of FA

•  Deterministic Finite Automaton (DFA)
– Each transition is uniquely determined by its

source state and input symbol
– Reading an input symbol is required for each

state transition
•  Nondeterministic Finite Automaton (NFA)
– For some state and input symbol, the next

state may be one or more possible states
– Epsilon transitions: arrows labeled by the

empty string symbol ε
9	

Deterministic Finite Automaton
(DFA)

•  5-tuple, (Q, Σ, δ, q0, F), consisting of
– a finite set of states (Q)
– a finite set of input symbols called the

alphabet (Σ)
– a transition function (δ : Q × Σ → Q)
– an initial or start state (q0 ∈ Q)
– a set of accept states (F ⊆ Q)

10	

9/6/16	

6	

Deterministic Finite Automaton
(DFA)

•  Let w = a1a2 ... an be a string over the
alphabet Σ. The automaton M accepts
the string w if a sequence of states,
r0,r1, ..., rn, exists in Q with the
following conditions:
– r0 = q0
– ri+1 = δ(ri, ai+1), for i = 0, ..., n−1
– rn ∈ F.

11	

DFA Example

•  M = (Q, Σ, δ, q0, F) where
– Q = {S1, S2},
– Σ = {0, 1},
– q0 = S1,
– F = {S1}, and
– δ is defined by the following

state transition table:

12	

State transition diagram

9/6/16	

7	

What is the transition diagram of
the following transition table? [2]

13	

What is the transition table of the
following transition diagram?

14	

9/6/16	

8	

Nondeterministic Finite Automaton
(NFA)

•  Let P(Q) denote the power set of Q
•  5-tuple, (Q, Σ, Δ, q0, F), consisting of
– a finite set of states Q
– a finite set of input symbols Σ
– a transition function Δ : Q × Σ → P(Q)
– an initial (or start) state q0 ∈ Q
– a set of accept states (F ⊆ Q)

15	

Nondeterministic Finite Automaton
(NFA)

•  Let w = a1a2 ... an be a word over the
alphabet Σ. The automaton M accepts
the word w if a sequence of states,
r0,r1, ..., rn, exists in Q with the
following conditions:
– r0 = q0
– ri+1 ∈ Δ(ri, ai+1), for i = 0, ..., n−1
– rn ∈ F.

16	

9/6/16	

9	

An NFA Example [3]

17	

From a Regular Expression to an NFA

a)  Base case
b) Concatenation
c)  Alternation
d) Kleene closure

Note: Build NFA in a
top-down manner by breaking
components level-by-level

18	

Start A B

Start AB
A

B Start A|B

ε A

Start A*

ε

ε ε

ε ε

ε

ε

0 1

0

1 2

3

5

4

0 1 2

0 1 2 3

9/6/16	

10	

An Example

•  (a|b)*abb
– Step 1:

– Step 2:

– Step 3:

19	

(a|b)*

Start

a b b

a|b

Start

a b b ε ε
ε

ε

ε

ε

Start

a b b ε ε
ε a ε

ε b ε 0 1
2 3

4 5
6 7 8 9 10

From an NFA to a DFA

•  Insight
– Remove ambiguous transition by merging

states
– Each DFA state corresponds to a set of

equivalent NFA states
– The NFA states within an equivalent set

have ε-transitions among themselves, or they
are reachable via the same input symbol
from states in another equivalent set

20	

Start

a b b ε ε
ε a ε

ε b ε 0 1
2 3

4 5
6 7 8 9 10

ε

ε

9/6/16	

11	

From an NFA to a DFA
Define ε-closure(s) as the set of NFA states reachable from state s on ε-
transitions alone.
Algorithm:

 push ε-closure(start) on stack
 while stack is not empty do
 pop an element T,
 mark T as processed
 for each input symbol a do
 find all states reachable from any state in T via a,
 also find the ε-closure of those newly found states,
 if the set is already processed
 get the assigned label U
 else
 assign a new label to the state set, such as U
 put U on stack
 Trans[T, a] := U, where T and U are new states in DFA, and their
 transition is labeled with a 21	

