Motivating Example

- Token set:
 - assign -> :=
 - plus -> +
 - minus -> -
 - times -> *
 - div -> /
 - Iparen -> (
 - rparen ->)
 - id -> letter(letter|digit)*
 - number -> digit digit*|digit*(.digit|digit.)digit*

Can we automate the scanner implementation?

- Yes. A scanner generator tool can generate the implementation from regular expressions with four steps
 - Convert regular expressions to Nondeterministic Finite Automata (NFA)
 - Convert NFA to Deterministic Finite Automata (DFA)
 - Minimize the DFA
 - Implement DFA as switch statements

- Can an FA M accept a string w?
 - The machine starts in the start state
 - Given each character of w, the machine will transition from state to state according to predefined transition rules
 - M accepts w if the last input of w causes the machine to halt properly. Otherwise, it is said that M rejects w.

Two types of FA

- Deterministic Finite Automaton (DFA)
 - Each transition is uniquely determined by its source state and input symbol
 - Reading an input symbol is required for each state transition
- Nondeterministic Finite Automaton (NFA)
 - For some state and input symbol, the next state may be one or more possible states
 - Epsilon transitions: arrows labeled by the empty string symbol $\boldsymbol{\epsilon}$

9

Deterministic Finite Automaton (DFA) • 5-tuple, (Q, Σ, δ, q₀, F), consisting of

- a finite set of states (Q)
- a finite set of input symbols called the alphabet (Σ)
- a transition function ($\delta: Q \times \Sigma \rightarrow Q$)
- an initial or start state ($q_0 \in Q$)
- a set of accept states (F \subseteq Q)

11

Deterministic Finite Automaton (DFA)

• Let $w = a_1 a_2 \dots a_n$ be a string over the alphabet Σ . The automaton M accepts the string w if a sequence of states, r_0, r_1, \dots, r_n , exists in Q with the following conditions: $-r_0 = q_0$ $-r_{i+1} = \delta(r_i, a_{i+1})$, for $i = 0, \dots, n-1$

$$-r_n \in F$$
.

Nondeterministic Finite Automaton (NFA)

- Let P(Q) denote the power set of Q
- 5-tuple, (Q, Σ , Δ , q_0 , F), consisting of
 - a finite set of states Q
 - a finite set of input symbols Σ
 - a transition function $\Delta : Q \times \Sigma \rightarrow P(Q)$
 - an initial (or start) state $q_0 \in Q$
 - a set of accept states ($F \subseteq Q$)

Nondeterministic Finite Automaton (NFA)

• Let
$$w = a_1 a_2 \dots a_n$$
 be a word over the
alphabet Σ . The automaton M accepts
the word w if a sequence of states,
 r_0, r_1, \dots, r_n , exists in Q with the
following conditions:
 $-r_0 = q_0$
 $-r_{i+1} \in \Delta(r_i, a_{i+1})$, for $i = 0, \dots, n-1$
 $-r_n \in F$.

16

15

From an NFA to a DFA

Define ε-closure(s) as the set of NFA states reachable from state s on εtransitions alone. Algorithm: push ε-closure(start) on stack while stack is not empty do pop an element T, mark T as processed for each input symbol a do find all states reachable from any state in T via a, also find the ε-closure of those newly found states,

if the set is already processed

get the assigned label ${f U}$

else

assign a new label to the state set, such as U

put <mark>V</mark> on stack

Trans[T, a] := U, where T and U are new states in DFA, and their transition is labeled with a 21