Motivating Example

* Token set:
— assigh -> :=
— plus -> +
— minus -> -
— times -> *
—div->/
— Iparen -> (
— rparen ->)
— id -> letter(letter|digit)*
— number -> digit digit*|digit*(.digit|digit.)digit*

Motivating Example

« What are the lexemes in the string
"a_vari=b* 3"?

* What are the corresponding tokens ?

« How do you identify the tokens?

9/6/16

A ndive scanner algorithm

1. read characters one at a time (e.g., cur_char) with one look-ahead
character lh_char

2. if cur_char is one of the one-character tokens{() [] < >, ; =
+ -} then return the token

3.if cur_char is "', check lh_char
if lh_char is '=', then return token ":="
else report error

3. if cur_char is a digit,
then read any additional digits with at most one "' and return number

else report error
4. if cur_char is a letter,
then read any additional letters and digits and return id

Pictorial representation of the
scanner as a finite automaton

space, tab, newline, return

« Thisisa
deterministic
finite automaton
(DFA)

9/6/16

Can we automate the scanner
implementation?

* Yes. A scanner generator tool can
generate the implementation from
regular expressions with four steps

— Convert regular expressions o
Nondeterministic Finite Automata (NFA)

— Convert NFA to Deterministic Finite
Automata (DFA)

— Minimize the DFA
— Implement DFA as switch statements

Finite Automaton (FA)

* A simple idealized machine to recognize
patterns in character sequences

 Its job is to accept or reject an input
depending on whether the pattern
defined by the FA occurs in the input

9/6/16

9/6/16

Revisit the Example

* Can an FA M accept a string w?
— The machine starts in the start state

— Given each character of w, the machine will
transition from state to state according to
predefined transition rules

— M accepts w if the last input of w causes the
machine to halt properly. Otherwise, it is said
that M rejects w.

Finite Automaton & Regular Expression

* They have equivalent expressive power

— For every regular expression RE, there is a
corresponding FA that accepts the set of
strings generated by RE

— For every FA, there is a corresponding RE
that generates the set of strings accepted
by FA

9/6/16

Two types of FA

« Deterministic Finite Automaton (DFA)

— Each transition is uniquely determined by its
source state and input symbol

— Reading an input symbol is required for each
state ftransition
* Nondeterministic Finite Automaton (NFA)

— For some state and input symbol, the next
state may be one or more possible states

— Epsilon transitions: arrows labeled by the
empty string symbol €

Deterministic Finite Automaton
(DFA)

« 5-tuple, (Q, Z, 3, qq, F), consisting of
—a finite set of states (Q)

—a finite set of input symbols called the
alphabet ()

—a transition function (3 : Qx Z — Q)
—an initial or start state (q, € Q)
—a set of accept states (F € Q)

Deterministic Finite Automaton
(DFA)

* Let w=a,a, ... a,be a string over the
alphabet Z. The automaton M accepts
the string wif a sequence of states,
rory, ..., 'y, exists in Q with the
following conditions:

—ro= 9o
-r.;=0(r;, a,,), fori=0, .., n—1
-r, € F.

DFA Example

1 1

c M=(Q, 2,3, g, Hwhere)~ ()

~Q=1(5,5). ~(=)

-2={0,1}, el
—q,= S, State transition diagram
- F={5}, and

—J is defined by the following
state transition table:

0|1
s,|S:|s;
$,(51(S »

9/6/16

What is the transition diagram of
the following transition table? [2]

q0 1 0

0|1
—dqo || 92
*q1 || q1
Q2 || 92 | q1

What is the transition table of the
following transition diagram?

9/6/16

Nondeterministic Finite Automaton
(NFA)

* Let P(Q) denote the power set of Q

« 5-tuple, (Q, Z, A, qq, F), consisting of
—a finite set of states Q
—a finite set of input symbols X
—a transition function A : Q x Z — P(Q)
—an initial (or start) state g, € Q
—a set of accept states (F € Q)

Nondeterministic Finite Automaton
(NFA)

* Let w=aqja, ... a,be a word over the
alphabet Z. The automaton M accepts
the word w if a sequence of states,
rory, ..., 'y, exists in Q with the
following conditions:

—ro= 9o
—r.; € Ar, a,)), fori=0,.. n—-1
-r, € F.

9/6/16

An NFA Example [3]

1 1

Input o e . (f\)///g\\\\(A\
State e —
S | 0 0 {SnS S
S {S3 Sy ¢ ‘ 0
S (S} Sy ¢ . i
Ss {Ss} {Sa| ¢ ()~
Si (S} (S} ¢ e °
~

17

From a Regular Expression to an NFA

a) Base case o0

b) Concatenation a5 sAB

c) Alternation Qm@)
Start AlB

d) Kleene closure 920

O OS5 3)
Note: Build NFA in a SA

top-down manner by breaking
components level-by-level

18

9/6/16

An Example

* (a|b)*abb
— S-]-ep 1: . (alb)* . a . b . b .

Start

Start

— Remove ambiguous transition by merging
states

— Each DFA state corresponds to a set of
equivalent NFA states

— The NFA states within an equivalent set
have e-transitions among themselves, or they
are reachable via the same input symbol
from states in another equivalent set

9/6/16

10

From an NFA to a DFA

Define e-closure(s) as the set of NFA states reachable from state s on ¢-
transitions alone.

Algorithm:
push e-closure(start) on stack
while stack is not empty do
pop an element T,
mark T as processed
for each input symbol a do
find all states reachable from any state in T via a,
also find the e-closure of those newly found states,
if the set is already processed
get the assigned label U
else
assign a new label to the state set, such as U
put U on stack

Trans[T, a] := U, where T and U are new states in DFA, and thein
transition is labeled with a 21

9/6/16

11

