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Motivating Example 

•  Token set: 
–  assign -> := 
–  plus -> + 
– minus -> - 
–  times -> * 
– div -> / 
–  lparen -> ( 
–  rparen -> ) 
–  id -> letter(letter|digit)* 
–  number -> digit digit*|digit*(.digit|digit.)digit* 
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Motivating Example 

•  What are the lexemes in the string 
“a_var := b * 3” ? 

•  What are the corresponding tokens ? 
•  How do you identify the tokens? 
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1. read characters one at a time (e.g., cur_char) with one look-ahead  
   character lh_char 
2. if cur_char is one of the one-character tokens {( ) [ ] < > , ; =  
  + -} then return the token 
3. if cur_char is ‘:’, check lh_char  
      if lh_char is ‘=’, then return token “:=” 
      else report error 
3. if cur_char is a digit, 
      then read any additional digits with at most one ‘.’ and return number 
      else report error 
4. if cur_char is a letter, 
      then read any additional letters and digits and return id 
… … 
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A naïve scanner algorithm 

Pictorial representation of the 
scanner as a finite automaton 
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•  This is a 
deterministic 
finite automaton 
(DFA) 
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Can we automate the scanner 
implementation? 

•  Yes. A scanner generator tool can 
generate the implementation from 
regular expressions with four steps 
– Convert regular expressions to 

Nondeterministic Finite Automata (NFA) 
– Convert NFA to Deterministic Finite 

Automata (DFA) 
– Minimize the DFA 
– Implement DFA as switch statements 
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Finite Automaton (FA) 

•  A simple idealized machine to recognize 
patterns in character sequences 

•  Its job is to accept or reject an input 
depending on whether the pattern 
defined by the FA occurs in the input 
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Revisit the Example 

•  Can an FA M accept a string w? 
– The machine starts in the start state 
– Given each character of w, the machine will 

transition from state to state according to 
predefined transition rules 

– M accepts w if the last input of w causes the 
machine to halt properly. Otherwise, it is said 
that M rejects w. 
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Finite Automaton & Regular Expression 

•  They have equivalent expressive power 
– For every regular expression RE, there is a 

corresponding FA that accepts the set of 
strings generated by RE 

– For every FA, there is a corresponding RE 
that generates the set of strings accepted 
by FA 
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Two types of FA 

•  Deterministic Finite Automaton (DFA) 
– Each transition is uniquely determined by its 

source state and input symbol 
– Reading an input symbol is required for each 

state transition 
•  Nondeterministic Finite Automaton (NFA) 
– For some state and input symbol, the next 

state may be one or more possible states 
– Epsilon transitions: arrows labeled by the 

empty string symbol ε 
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Deterministic Finite Automaton 
(DFA) 

•  5-tuple, (Q, Σ, δ, q0, F), consisting of 
– a finite set of states (Q) 
– a finite set of input symbols called the 

alphabet (Σ) 
– a transition function (δ : Q × Σ → Q) 
– an initial or start state (q0 ∈ Q) 
– a set of accept states (F ⊆ Q) 
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Deterministic Finite Automaton 
(DFA) 

•  Let w = a1a2 ... an be a string over the 
alphabet Σ. The automaton M accepts 
the string w if a sequence of states, 
r0,r1, ..., rn, exists in Q with the 
following conditions: 
– r0 = q0 
– ri+1 = δ(ri, ai+1), for i = 0, ..., n−1 
– rn ∈ F. 
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DFA Example 

•  M = (Q, Σ, δ, q0, F) where 
– Q = {S1, S2}, 
– Σ = {0, 1}, 
– q0 = S1, 
– F = {S1}, and 
– δ is defined by the following 

state transition table: 
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State transition diagram 
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What is the transition diagram of 
the following transition table? [2] 
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What is the transition table of the 
following transition diagram? 
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Nondeterministic Finite Automaton 
(NFA) 

•  Let P(Q) denote the power set of Q 
•  5-tuple, (Q, Σ, Δ, q0, F), consisting of 
– a finite set of states Q 
– a finite set of input symbols Σ 
– a transition function Δ : Q × Σ → P(Q) 
– an initial (or start) state q0 ∈ Q 
– a set of accept states (F ⊆ Q) 
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Nondeterministic Finite Automaton 
(NFA) 

•  Let w = a1a2 ... an be a word over the 
alphabet Σ. The automaton M accepts 
the word w if a sequence of states, 
r0,r1, ..., rn, exists in Q with the 
following conditions: 
– r0 = q0 
– ri+1 ∈ Δ(ri, ai+1), for i = 0, ..., n−1 
– rn ∈ F. 

16	  



9/6/16	  

9	  

An NFA Example [3] 
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From a Regular Expression to an NFA 

a)  Base case 
b) Concatenation 
c)  Alternation 
d) Kleene closure 

Note: Build NFA in a  
top-down manner by breaking  
components level-by-level 
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An Example 

•  (a|b)*abb 
– Step 1: 

– Step 2: 

– Step 3: 
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From an NFA to a DFA 

•  Insight 
– Remove ambiguous transition by merging 

states 
– Each DFA state corresponds to a set of 

equivalent NFA states 
– The NFA states within an equivalent set 

have ε-transitions among themselves, or they 
are reachable via the same input symbol 
from states in another equivalent set 
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From an NFA to a DFA 
Define ε-closure(s) as the set of NFA states reachable from state s on ε-
transitions alone. 
Algorithm: 

 push ε-closure(start) on stack 
 while stack is not empty do  
  pop an element T, 
  mark T as processed 
  for each input symbol a do 
   find all states reachable from any state in T via a, 
   also find the ε-closure of those newly found states, 
   if the set is already processed  
    get the assigned label U 
   else  
    assign a new label to the state set, such as U 
    put U on stack 
   Trans[T, a] := U, where T and U are new states in DFA, and their 
 transition is labeled with a 21	  


