An Example Grammar

<program> ->

<stmts> ->

<stmt> ->
<var> ->
<expr> ->

<term> ->

<stmts>

<stmt>
<stmt> ; <stmts>

<var> = <expr>

a

| b | c | d

<term> + <term>
<term> - <term>

<var>
const

An Exemplar Derivation

<program>

<stmts>

<stmt>
<var> = <expr>
a = <expr>

= <var> + <term>
= b + <term>

Lo

= <term> + <term>

= b + const<—— sentence

9/1/16

Sentential Forms

* Every string of symbols in the
derivation is a sentential form

« A sentence is a sentential form that has
only terminal symbols

« A leftmost derivation is one in which
the leftmost non-terminal in each
sentential form is the one that is
expanded next in the derivation

Sentential Forms

* A left-sentential form is a sentential
form that occurs in the leftmost
derivation

* A rightmost derivation works right to lef+t
instead

* A right-sentential form is a sentential
form that occurs in the rightmost
derivation

« Some derivations are neither leftmost nor
rightmost

4

9/1/16

9/1/16

Why BNF?

* Provides a clear and concise syntax
description

* The parse tree can be generated from
BNF

* Parsers can be based on BNF and are
easy to maintain

Context-Free Grammars

 The syntax of simple arithmetic
expression
expr -> id | number | -expr | (expr)
|expr op expr
op =>+ | - | * | /
* What are the terminal symbols and
nonterminal symbols?

* What is the start symbol?

expr

One Possible Derivation

=> exXpr Op expr
=>> ..

=> jid + number

Another Example

<program> -> <stmts>

<stmts>

<stmt>
<var>

<expr>

<term>

-> <stmt>
|<stmt> ; <stmts>

-> <var> = <expr>
->a | b | c|d

-> <term> + <term>
| <term> - <term>

-> <var>
| const

+ 6={T,N, S, P}

What are the
terminals?

What are the
nonterminals?

What is the
start symbol?

Possible
strings?

9/1/16

Parse Tree

* A parse tfree is

— a hierarchical representation of a
derivation

— Yo represent the structure of the
derivation of a terminal string from some
non-terminal

—to describe the hierarchical syntactic
structure of programs for any language

An Example

* Given the simple assignment statement
syntax
<assign> -> <id> = <expr>
<dd>->A|B|C
<expr> -> <id> + <expr>
| <id>* <expr>
| (<expr>)
<id>
* With leftmost derivation, howis A=B* (A +
C) generated?

9/1/16

Derivation for A=B* (A + ()

<assign> => <id> = <expr>
=> A= <expr>
> Az=<d>* <expr>
=> A = B * <expr>
=> A= B> (<expr>)
=>A=B*(«id>+ <expr>)
=> A= B* (A +<expr>)
=> A= B*(A+<id>)
> A=B*(A+C)

The Parse Tree for A=B* (A + ()

<assign>
—_—
<id> = <expr>
l %\
A <d> ¢ <expr>
| %\
B (<expr>)
/‘\
<id> + <expr>
l |
A <id>
l
C

9/1/16

Parse Tree

« A grammar is ambiguous if it generates
a sentential form that has two or more

distinct parse trees

An Ambiguous Grammar

expr -> id | number | -expr | (expr)
| expr op expr
op =>+ | - [* | /

* Parse trees for "slope * x + intercept’

I,
.

L’,\'[?I' (',\'pl'
e e - T
expr op expr expr op expr
el e
expr op expr | id(intlrcept) d(1‘ pe) | expr op expr
id(s‘lope) ‘ id|(x) d‘() | id(intlrcept

14

9/1/16

9/1/16

What goes wrong?

* The production rules do not capture the
associativity and precedence of various
operators

— Associativity tells whether the operators
group left to right or right to left
*Is10-4-3equalto (10-4)-30r10-(4-3)?
— Precedence tells some operators group more
tightly than the others?
* Is slope * x + intercept equal to (slope * x) +
intercept or slope * (x + intercept)?

Operator Associativity

- Single recursion in production rules
<expr> -> <expr> - <expr> | const

X Ambiguous
<expr> -> <expr> - const | const
v Unambiguous

<expr> -> const - <expr> | const

v Unambiguous (less desirable)

Operator Precedence

« Use stratification in production rules

— Intentionally put operators at different
levels of parse trees

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

Improved Unambiguous Context-Free
Grammar

1. expr -> expr add op term
| term
2. term -> term mul op factor | factor
factor -> id | number | -factor
| (expr)
3. add op -> + | -
4. mul op -> * | /

9/1/16

Revisit "slope * x + intercept”

* Parse Tree
expr
/‘\
expr add op term

/ / |

term + factor

%\ \

term mul op factor id(intercept)
— | I

factor * id(x)
I

id(slope)

Extended BNF (EBNF)

* There are extensions of BNF to simplify
representation

— Kleene star * or {} to represent repetition
(O or more)

— () to represent alternative parts

—[] to represent optional parts
e id_list -> id (, id)*
« proc_call -> id'([expr_list])

9/1/16

10

Lexical and Syntactic Analysis

« Two steps to discover the syntactic
structure of a program

— Lexical analysis (Scanner): to read the input
characters and output a sequence of tokens

— Syntactic analysis (Parser): to read the
tokens and output a parse tree and report
syntax errors if any

21

Interaction between lexical analysis
and syntactic analysis

Source token
Program

Lexical Syntex
Analysis

get next
taken from
lexical analyzer

22

Analysis L% pargetree

9/1/16

11

Scanhner

* Pattern matcher for character strings

— If a character sequence matches a pattern,
it is identified as a token

* Responsibilities
— Tokenize source, report lexical errors if
any, remove comments and whitespace, save
text of interesting tokens, save source

locations, (optional) expand macros and
implement preprocessor functions

Tokenizing Source

* Given a program, identify all lexemes and
their categories (tokens)

9/1/16

12

