
9/1/16	

1	

An Example Grammar
<program> -> <stmts>

<stmts> -> <stmt>

 | <stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term>

 | <term> - <term>

<term> -> <var>

 | const 1	

An Exemplar Derivation
<program> => <stmts>

 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

2	

sentence

9/1/16	

2	

Sentential Forms

•  Every string of symbols in the
derivation is a sentential form

•  A sentence is a sentential form that has
only terminal symbols

•  A leftmost derivation is one in which
the leftmost non-terminal in each
sentential form is the one that is
expanded next in the derivation

3	

Sentential Forms
•  A left-sentential form is a sentential

form that occurs in the leftmost
derivation

•  A rightmost derivation works right to left
instead

•  A right-sentential form is a sentential
form that occurs in the rightmost
derivation

•  Some derivations are neither leftmost nor
rightmost

4	

9/1/16	

3	

Why BNF?

•  Provides a clear and concise syntax
description

•  The parse tree can be generated from
BNF

•  Parsers can be based on BNF and are
easy to maintain

5	

Context-Free Grammars

•  The syntax of simple arithmetic
expression
 expr -> id | number | -expr |(expr)

 |expr op expr
 op -> + | - | * | /

•  What are the terminal symbols and
nonterminal symbols?

•  What is the start symbol?

6	

9/1/16	

4	

One Possible Derivation

expr => expr op expr
 => …
 => id + number

7	

Another Example

•  G = {T, N, S, P}
•  What are the

terminals?
•  What are the

nonterminals?
•  What is the

start symbol?
•  Possible

strings?
8	

<program> -> <stmts>

<stmts> -> <stmt>
 |<stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term>
 | <term> - <term>

<term> -> <var>
 | const

9/1/16	

5	

Parse Tree

•  A parse tree is
– a hierarchical representation of a

derivation

– to represent the structure of the
derivation of a terminal string from some
non-terminal

– to describe the hierarchical syntactic
structure of programs for any language

9	

An Example

•  Given the simple assignment statement
syntax
 <assign> -> <id> = <expr>
 <id> -> A | B | C
 <expr> -> <id> + <expr>
 | <id> * <expr>
 | (<expr>)
 | <id>

•  With leftmost derivation, how is A = B * (A +
C) generated?

10	

9/1/16	

6	

Derivation for A = B * (A + C)

<assign> => <id> = <expr>
 => A = <expr>
 => A = <id> * <expr>
 => A = B * <expr>
 => A = B * (<expr>)
 => A = B * (<id> + <expr>)
 => A = B * (A + <expr>)
 => A = B * (A + <id>)
 => A = B * (A + C)

11	

The Parse Tree for A = B * (A + C)

12	

<assign>

<id> = <expr>

A <id> * <expr>

B (<expr>)

<id> + <expr>

<id> A

C

9/1/16	

7	

Parse Tree

•  A grammar is ambiguous if it generates
a sentential form that has two or more
distinct parse trees

13	

An Ambiguous Grammar

expr -> id | number | -expr |(expr)
 | expr op expr
 op -> + | - | * | /

•  Parse trees for “slope * x + intercept”:

14	

*

9/1/16	

8	

What goes wrong?

•  The production rules do not capture the
associativity and precedence of various
operators
– Associativity tells whether the operators

group left to right or right to left
•  Is 10 – 4 – 3 equal to (10 - 4) – 3 or 10 – (4 – 3) ?

– Precedence tells some operators group more
tightly than the others?
•  Is slope * x + intercept equal to (slope * x) +

intercept or slope * (x + intercept)?
15	

Operator Associativity

•  Single recursion in production rules

16	

<expr> -> <expr> - <expr> | const

✗ Ambiguous

<expr> -> <expr> - const | const

✓  Unambiguous

<expr> -> const - <expr> | const

✓  Unambiguous (less desirable)

9/1/16	

9	

Operator Precedence

•  Use stratification in production rules
– Intentionally put operators at different

levels of parse trees

17	

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

Improved Unambiguous Context-Free
Grammar

1. expr -> expr add_op term
 | term
2. term -> term mul_op factor | factor
3. factor -> id | number | -factor

 | (expr)
3. add_op -> + | -
4. mul_op -> * | /

18	

9/1/16	

10	

Revisit “slope * x + intercept”

•  Parse Tree

19	

expr

expr add_op term

+ factorterm

id(intercept)term mul_op factor

*factor

id(slope)

id(x)

Extended BNF (EBNF)

•  There are extensions of BNF to simplify
representation
– Kleene star * or {} to represent repetition

(0 or more)
– () to represent alternative parts
– [] to represent optional parts
•  id_list -> id (, id)*
•  proc_call -> id’(’[expr_list]’)’

20	

9/1/16	

11	

Lexical and Syntactic Analysis

•  Two steps to discover the syntactic
structure of a program
– Lexical analysis (Scanner): to read the input

characters and output a sequence of tokens
– Syntactic analysis (Parser): to read the

tokens and output a parse tree and report
syntax errors if any

21	

Interaction between lexical analysis
and syntactic analysis

22	

9/1/16	

12	

Scanner

•  Pattern matcher for character strings
– If a character sequence matches a pattern,

it is identified as a token
•  Responsibilities
– Tokenize source, report lexical errors if

any, remove comments and whitespace, save
text of interesting tokens, save source
locations, (optional) expand macros and
implement preprocessor functions

23	

Tokenizing Source

•  Given a program, identify all lexemes and
their categories (tokens)

24	

