
8/30/16	

1	

Programming Language Definition

•  Syntax
– To describe what its programs look like
– Specified using regular expressions and
context-free grammars

•  Semantics
– To describe what its programs mean
– Specified using axiomatic semantics,

operational semantics, or denotational
semantics

1	

Regular Expressions

•  A regular expression is one of the
following:
– A character
– The empty string, denoted by ε
– Two or more regular expressions

concatenated
– Two or more regular expressions separated

by | (or)
– A regular expression followed by the Kleene

star (concatenation of zero or more strings)
2	

8/30/16	

2	

Regular Expressions

•  The pattern of numeric constants can
be represented as:

3	

What is the meaning of following
expressions ?

•  [0-9a-f]+

•  b[aeiou]+t
•  a*(ba*ba*)*

4	

8/30/16	

3	

Define Regular Expressions

•  Match strings only consisting of ‘a’, ‘b’,
or ‘c’ characters

•  Match only the strings “Buy more milk”,
“Buy more bread”, or “Buy more juice”

•  Match identifiers which contain letters
and digits, starting with a letter

5	

Lexeme, Token, & Pattern [1]

•  Lexeme
– A sequence of characters in the source

program with the lowest level of syntactic
meanings
•  E.g., sum, +, -

•  Token
– A category of lexemes
– A lexeme is an instance of token
– The basic building blocks of programs

6	

8/30/16	

4	

Token Examples

7	

Token Informal Description Sample
Lexemes

keyword All keywords defined in the
language

if else

comparison <, >, <=, >=, ==, != <=, !=
id Letter followed by letters and

digits
pi, score, D2

number Any numeric constant 3.14159, 0, 6
literal Anything surrounded by “’s, but

exclude “
“core dumped”

Lexeme, Token, & Pattern [1]

•  Pattern
– A description of the form that the lexemes

of a token may take
– Specified with regular expressions

8	

8/30/16	

5	

Context-Free Grammars

•  Using the notation Backus-Naur Form
(BNF)

•  A context-free grammar consists of [1]
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions P

9	

Terminals T

•  The basic symbols from which strings
are formed

•  Terminals are tokens
–  if, foo, ->, ‘a’

10	

8/30/16	

6	

Non-terminals N

•  Syntactic variables that denote sets of
strings or classes of syntactic structures
– expr, stmt

•  Impose a hierarchical structure on the
language

11	

Start Symbol S

•  One nonterminal
•  Denote the language defined by the

grammar

12	

8/30/16	

7	

Production P

•  Specify the manner in which terminals
and nonterminals are combined to form
strings

•  Each production has the format
 nonterminal -> a string of nonterminals and
 terminals

•  One nonterminal can be defined by a list
of nonterminals and terminals

13	

Production
•  Nonterminal symbols can have more than

one distinct definition, representing all
possible syntactic forms in the language
 <if_stmt> -> if <logic_expr> then <stmt>

 <if_stmt> -> if <logic_expr> then <stmt> else <stmt>

Or
 <if_stmt> -> if <logic_expr> then <stmt>

 | if <logic_expr> then <stmt> else <stmt>

14	

8/30/16	

8	

Backus-Naur Form

•  Invented by John Backus and Peter
Naur to describe syntax of Algol 58/60

•  Used to describe the context-free
grammars

•  A meta-language: a language used to
describe another language

15	

BNF Rules

•  A rule has a left-hand side(LHS), one or
more right-hand side (RHS), and consists
of terminal and nonterminal symbols

•  For a nonterminal, when there is more
than one RHS, there are multiple
alternative ways to expand/replace the
nonterminal
– E.g., <stmt> -> <single_stmt>

 | begin <stmt_list> end
16	

8/30/16	

9	

BNF Rules

•  Rules can be defined using recursion
<ident_list> -> ident

 | ident, <ident_list>

•  Two types of recursion
– Left recursion:
•  id_list_prefix -> id_list_prefix, id | id

– Right recursion
•  The above example

17	

How does BNF work?

•  It is like a mathematical game:
– You start with a symbol S
– You are given rules (Ps) describing how you

can replace the symbol with other symbols
(Ts or Ns)

– The language defined by the BNF grammar
is the set of all terminal strings you can
produce by following these rules

18	

8/30/16	

10	

Derivation

•  By repeatedly applying rules to
nonterminals, we end up with strings
containing only terminal symbols
(sentences)

•  All derived strings compose the
language defined by the grammar

19	

