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Prolog 

•  A logic programming language 
•  Prolog programs consist of collections of 

statements 
•  There are only a few kinds of statements 

in Prolog, but they can be complex 
– Fact statements, rule statements, and goal 

statements 
•  All prolog statements are constructed 

from terms 
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Fact Statements 

•  Correspond to Headless Horn clauses 
•  Fact statements are propositions that 

are assumed to be true, and from which 
new information can be inferred 

•  E.g., female(shelley). 
     female(mary). 
     mother(mary, shelley). 
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Rule Statements 

•  Correspond to Headed Horn clauses 
•  They describe implication rules between 

propositions, or logical relationship 
between them: if a set of given 
conditions are satisfied, what conclusion 
can be drawn 

•  The consequent of a statement is a 
single term, while the antecedent can be 
either a single term or conjunction 
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Conjunctions 

•  The AND operation in conjunctions is 
implied in Prolog 

•  The structures that specify atomic 
propositions in a conjunction are 
separated by commas 

•  The commas can be considered as AND 
operators 
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Rule Statements 

•  E.g., grandparent(X, Z) :- parent(X, Y), 
parent(Y, Z),  
where X, Y, and Z are universal objects 
– It states that if there are instantiations of 

X, Y, and Z such that parent (X, Y) is true, 
and parent (Y, Z) is true, then for those 
same instantiations of X, Y, and Z, 
grandparent(X, Z) is true 
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Goal Statements 
•  Also correspond to Headless Horn clauses 
•  Goal statements are propositions 

describing the theorem that we want the 
system to either prove or disprove  
– E.g., man(fred). 

•  Because goal statements and some nongoal 
statements have the same form, a Prolog 
implementation must have some means to 
distinguish between the two 
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Goal Statement 

 rainy(seattle).
 rainy(rochester).
 ?- rainy(C).
The Prolog interpreter would respond 
with: 
 C = seattle
Seattle is returned first, because it 
comes first in the database 
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Goal Statement 

•  If we want to find all possible solutions, 
we can ask the interpreter to continue 
by typing a semicolon: 
 C = seattle ;

  C = rochester.

N.	
  Meng,	
  S.	
  Arthur	
   8	
  



11/29/16	
  

5	
  

Another Example 

  takes(jane_doe, his201).
 takes(jane_doe, cs254).
 takes(ajit_chandra, art302).
 takes(ajit_chandra, cs254).
 classmates(X, Y) :- takes(X, Z),  
takes(Y, Z).

What does the following query return? 
 ?- classmates(jane_doe, X).
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  X = jane_doe ;
 X = jane_doe;
 X = ajit_chandra.
How should we modify the rule so that 
the student is not considered as a 
classmate of himself or herself? 
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classmates(X, Y) :- takes(X, Z),  
takes(Y, Z), X\=Y.
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•  Can we define propositions in the 
following way? 
takes(jane doe, his201). 

N.	
  Meng,	
  S.	
  Arthur	
   11	
  

•  No. The prolog interpreter will complain. 
Instead, we can define the proposition 
as below: 

    takes(‘jane doe’, his201). 
 

Prolog Programs 

•  ASSERT (define) 
– FACTS about OBJECTS 
– RULES(“CLAUSES”) that inter-relate facts 

•  Ask QUESTIONS about objects and 
their relationship 
– GOALS 
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Some Prolog FACTS 

| ?-  (assert (father (michael, cathy))). 
| ?-  (assert (father (chuck, michael))). 
| ?-  (assert (father (chuck, julie))). 
| ?-  (assert (father (david, chuck))). 
| ?-  (assert (father (sam, melody))). 
| ?-  (assert (mother (cathy, melody))). 
| ?-  (assert (mother (hazel, michael))). 
| ?-  (assert (mother (hazel, julie))). 
| ?-  (assert (mother (melody, sandy))). 
| ?-  (assert (made_of (moon, green_cheese))). 
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Some Prolog RULES 
•  A person’s parent is their mother or father 
| ?-  (assert ((parent(X, Y) :-  father(X, Y); mother (X, Y)))). 

•  A person’s grandfather is the father of one 
of their parents 

| ?-  (assert ((grandfather(X,Y) :- father(X, A), parent(A, 
Y)))). 
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Some Prolog QUESTIONS 

•  Is chuck the parent of julie ? 
 | ?-  parent(chuck, julie). 

•  Is john the father of cathy ? 
 | ?-  father(john, cathy). 
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Note:	
  	
  
• 	
  	
  	
  No	
  “assert”s	
  
• 	
  	
  	
  No	
  use	
  of	
  variables	
  

Prolog Notes 
•  atoms: symbolic values of Prolog 
– father ( bill, mike) 
– Strings of letters, digits, and underscores 

starting with lower case letter 
•  variable: unbound entity 
– father (X, mike) 
– Strings of letters, digits, and underscores 

starting with UPPER CASE letter 
– Variables are not bound to type by declaration 
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Prolog Notes 

•  FACTS: UNCONDITIONAL 
ASSERTIONS OF “TRUTH” 
  (assert(mother(carol, jim))). 
– assumed to be true 
– contains no variables 
– stored in database 
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Prolog Notes 

•  RULES: ASSERTIONS from which 
conclusions can be drawn if given 
conditions are true 
  (assert((parent(X, Y) :-father(X, Y); 
mother (X, Y)))). 
– contains variables for instantiation 
– also stored in database 
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An Example 
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                    | ?-   (assert(color(banana, yellow))). 
                    | ?-   (assert(color(squash, yellow))). 
                    | ?-   (assert(color(apple, green))). 
                    | ?-   (assert(color(peas, green))). 

     FACTS 
                    | ?-   (assert(fruit(banana))). 
                    | ?-   (assert(fruit(apple))). 
                    | ?-   (assert(vegetable(squash))). 
                    | ?-   (assert(vegetable(peas))).      

  bob eats green colored vegetables 
  RULE        | ?-   (assert((eats(bob, X) :-  color(X, 

green), vegetable(X)))). 

An Example 
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What does bob eat ? 
      | ?- eats(bob, X). 
                 color(banana, green) => no 
                 color(squash, green) => no 
                 color(apple, green)    => yes 
                       vegetable(apple)  => no 
                 color(peas, green)     => yes 
                       vegetable(peas)   => yes 

      

Does bob eat apples ? 
      | ?- eats(bob, apple). 
                 color(apple, green) => match 
                 vegetable(apple)    => no 

Does bob eat squash ? 
    | ?- eats(bob, squash). 
                 color(squash, green) => no 

     (assert ((eats(bob, X) :- 
              color(X, green),   
              vegetable(X)))). 

 
 

therefore X = peas 

false 

false 


