
11/29/16	

1	

Prolog

•  A logic programming language
•  Prolog programs consist of collections of

statements
•  There are only a few kinds of statements

in Prolog, but they can be complex
– Fact statements, rule statements, and goal

statements
•  All prolog statements are constructed

from terms
N.	
 Meng,	
 S.	
 Arthur	
 1	

Fact Statements

•  Correspond to Headless Horn clauses
•  Fact statements are propositions that

are assumed to be true, and from which
new information can be inferred

•  E.g., female(shelley).
 female(mary).
 mother(mary, shelley).

N.	
 Meng,	
 S.	
 Arthur	
 2	

11/29/16	

2	

Rule Statements

•  Correspond to Headed Horn clauses
•  They describe implication rules between

propositions, or logical relationship
between them: if a set of given
conditions are satisfied, what conclusion
can be drawn

•  The consequent of a statement is a
single term, while the antecedent can be
either a single term or conjunction

N.	
 Meng,	
 S.	
 Arthur	
 3	

Conjunctions

•  The AND operation in conjunctions is
implied in Prolog

•  The structures that specify atomic
propositions in a conjunction are
separated by commas

•  The commas can be considered as AND
operators

N.	
 Meng,	
 S.	
 Arthur	
 4	

11/29/16	

3	

Rule Statements

•  E.g., grandparent(X, Z) :- parent(X, Y),
parent(Y, Z),
where X, Y, and Z are universal objects
– It states that if there are instantiations of

X, Y, and Z such that parent (X, Y) is true,
and parent (Y, Z) is true, then for those
same instantiations of X, Y, and Z,
grandparent(X, Z) is true

N.	
 Meng,	
 S.	
 Arthur	
 5	

Goal Statements
•  Also correspond to Headless Horn clauses
•  Goal statements are propositions

describing the theorem that we want the
system to either prove or disprove
– E.g., man(fred).

•  Because goal statements and some nongoal
statements have the same form, a Prolog
implementation must have some means to
distinguish between the two

N.	
 Meng,	
 S.	
 Arthur	
 6	

11/29/16	

4	

Goal Statement

 rainy(seattle).
 rainy(rochester).
 ?- rainy(C).
The Prolog interpreter would respond
with:
 C = seattle
Seattle is returned first, because it
comes first in the database

N.	
 Meng,	
 S.	
 Arthur	
 7	

Goal Statement

•  If we want to find all possible solutions,
we can ask the interpreter to continue
by typing a semicolon:
 C = seattle ;

 C = rochester.

N.	
 Meng,	
 S.	
 Arthur	
 8	

11/29/16	

5	

Another Example

 takes(jane_doe, his201).
 takes(jane_doe, cs254).
 takes(ajit_chandra, art302).
 takes(ajit_chandra, cs254).
 classmates(X, Y) :- takes(X, Z),
takes(Y, Z).

What does the following query return?
 ?- classmates(jane_doe, X).

N.	
 Meng,	
 S.	
 Arthur	
 9	

 X = jane_doe ;
 X = jane_doe;
 X = ajit_chandra.
How should we modify the rule so that
the student is not considered as a
classmate of himself or herself?

N.	
 Meng,	
 S.	
 Arthur	
 10	

classmates(X, Y) :- takes(X, Z),
takes(Y, Z), X\=Y.

11/29/16	

6	

•  Can we define propositions in the
following way?
takes(jane doe, his201).

N.	
 Meng,	
 S.	
 Arthur	
 11	

•  No. The prolog interpreter will complain.
Instead, we can define the proposition
as below:

 takes(‘jane doe’, his201).

Prolog Programs

•  ASSERT (define)
– FACTS about OBJECTS
– RULES(“CLAUSES”) that inter-relate facts

•  Ask QUESTIONS about objects and
their relationship
– GOALS

N.	
 Meng,	
 S.	
 Arthur	
 12	

11/29/16	

7	

Some Prolog FACTS

| ?- (assert (father (michael, cathy))).
| ?- (assert (father (chuck, michael))).
| ?- (assert (father (chuck, julie))).
| ?- (assert (father (david, chuck))).
| ?- (assert (father (sam, melody))).
| ?- (assert (mother (cathy, melody))).
| ?- (assert (mother (hazel, michael))).
| ?- (assert (mother (hazel, julie))).
| ?- (assert (mother (melody, sandy))).
| ?- (assert (made_of (moon, green_cheese))).

N.	
 Meng,	
 S.	
 Arthur	
 13	

Some Prolog RULES
•  A person’s parent is their mother or father
| ?- (assert ((parent(X, Y) :- father(X, Y); mother (X, Y)))).

•  A person’s grandfather is the father of one
of their parents

| ?- (assert ((grandfather(X,Y) :- father(X, A), parent(A,
Y)))).

N.	
 Meng,	
 S.	
 Arthur	
 14	

11/29/16	

8	

Some Prolog QUESTIONS

•  Is chuck the parent of julie ?
 | ?- parent(chuck, julie).

•  Is john the father of cathy ?
 | ?- father(john, cathy).

N.	
 Meng,	
 S.	
 Arthur	
 15	

Note:	
 	

• 	
 	
 	
 No	
 “assert”s	

• 	
 	
 	
 No	
 use	
 of	
 variables	

Prolog Notes
•  atoms: symbolic values of Prolog
– father (bill, mike)
– Strings of letters, digits, and underscores

starting with lower case letter
•  variable: unbound entity
– father (X, mike)
– Strings of letters, digits, and underscores

starting with UPPER CASE letter
– Variables are not bound to type by declaration

N.	
 Meng,	
 S.	
 Arthur	
 16	

11/29/16	

9	

Prolog Notes

•  FACTS: UNCONDITIONAL
ASSERTIONS OF “TRUTH”
 (assert(mother(carol, jim))).
– assumed to be true
– contains no variables
– stored in database

N.	
 Meng,	
 S.	
 Arthur	
 17	

Prolog Notes

•  RULES: ASSERTIONS from which
conclusions can be drawn if given
conditions are true
 (assert((parent(X, Y) :-father(X, Y);
mother (X, Y)))).
– contains variables for instantiation
– also stored in database

N.	
 Meng,	
 S.	
 Arthur	
 18	

11/29/16	

10	

An Example

N.	
 Meng,	
 S.	
 Arthur	
 19	

 | ?- (assert(color(banana, yellow))).
 | ?- (assert(color(squash, yellow))).
 | ?- (assert(color(apple, green))).
 | ?- (assert(color(peas, green))).

 FACTS
 | ?- (assert(fruit(banana))).
 | ?- (assert(fruit(apple))).
 | ?- (assert(vegetable(squash))).
 | ?- (assert(vegetable(peas))).

 bob eats green colored vegetables
 RULE | ?- (assert((eats(bob, X) :- color(X,

green), vegetable(X)))).

An Example

N.	
 Meng,	
 S.	
 Arthur	
 20	

What does bob eat ?
 | ?- eats(bob, X).
 color(banana, green) => no
 color(squash, green) => no
 color(apple, green) => yes
 vegetable(apple) => no
 color(peas, green) => yes
 vegetable(peas) => yes

Does bob eat apples ?
 | ?- eats(bob, apple).
 color(apple, green) => match
 vegetable(apple) => no

Does bob eat squash ?
 | ?- eats(bob, squash).
 color(squash, green) => no

 (assert ((eats(bob, X) :-
 color(X, green),
 vegetable(X)))).

therefore X = peas

false

false

