11/29/16

Prolog

* A logic programming language

* Prolog programs consist of collections of
statements

* There are only a few kinds of statements
in Prolog, but they can be complex

— Fact statements, rule statements, and goal
statements

« All prolog statements are constructed
from terms

Fact Statements

« Correspond to Headless Horn clauses

* Fact statements are propositions that
are assumed to be true, and from which
new information can be inferred

* E.g., female(shelley).

female(mary).
mother(mary, shelley).

Rule Statements

« Correspond to Headed Horn clauses

 They describe implication rules between
propositions, or logical relationship
between them: if a set of given
conditions are satisfied, what conclusion
can be drawn

 The consequent of a statement is a
single term, while the antecedent can be
either a single term or conjunction

Conjunctions

« The AND operation in conjunctions is
implied in Prolog

 The structures that specify atomic
propositions in a conjunction are
separated by commas

« The commas can be considered as AND
operators

11/29/16

11/29/16

Rule Statements

* E.g., grandparent(X, Z) :- parent(X, Y),

parent(Y, Z),

where X, Y, and Z are universal objects

— It states that if there are instantiations of
X, Y, and Z such that parent (X, Y) is true,
and parent (Y, Z) is true, then for those
same instantiations of X, Y, and Z,
grandparent(X, Z) is true

Goal Statements

* Also correspond to Headless Horn clauses

* Goal statements are propositions
describing the theorem that we want the
system to either prove or disprove
— E.g., man(fred).

* Because goal statements and some nongoal
statements have the same form, a Prolog
implementation must have some means to
distinguish between the two

Goal Statement

rainy(seattle).
rainy(rochester).

?- rainy(C).
The Prolog interpreter would respond
with:

C = seattle

Seattle is returned first, because it
comes first in the database

Goal Statement

« If we want to find all possible solutions,
we can ask the interpreter to continue
by typing a semicolon:

C = seattle ;
C = rochester.

11/29/16

11/29/16

Another Example

takes(jane doe, his201).
takes(jane doe, cs254).
takes(ajit _chandra, art302).
takes(ajit chandra, cs254).
classmates (X, Y) :- takes(X, Z),
takes(Y, Z).

What does the following query return?

?- classmates(jane doe, X).

X = jane doe ;

X = Jjane doe;

X = ajit chandra.

How should we modify the rule so that

the student is not considered as a
classmate of himself or herself?

classmates (X, Y) :- takes(X, Z),
takes (Y, Z), X\=Y.

11/29/16

* Can we define propositions in the
following way?
takes(jane doe, his201).

* No. The prolog interpreter will complain.
Instead, we can define the proposition
as below:

takes(’jane doe’, his201).

Prolog Programs

« ASSERT (define)
— FACTS about OBJECTS
— RULES("CLAUSES") that inter-relate facts
« Ask QUESTIONS about objects and
their relationship
— GOALS

11/29/16

Some Prolog FACTS

| 2- (assert (father (michael, cathy))).
| 2- (assert (father (chuck, michael))).
| ?- (assert (father (chuck, julie))).

| 2- (assert (father (david, chuck))).

| 2- (assert (father (sam, melody))).

| 2- (assert (mother (cathy, melody))).
| 2- (assert (mother (hazel, michael))).

| 2- (assert (mother (hazel, julie))).
| ?- (assert (mother (melody, sandy))).

| 2- (assert (made_of (moon, green_cheese))).

Some Prolog RULES

* A person's parent is their mother or father
| 2- (assert ((parent(X, Y):- father(X, Y): mother (X, ¥)))).
* A person's grandfather is the father of one

of their parents

| 2- (assert ((grandfather(X,Y) :- father(X, A), parent(A,
Y))).

11/29/16

Some Prolog QUESTIONS

* Is chuck the parent of julie ?
| ?- parent(chuck, julie).

* Is john the father of cathy ?
| ?- father(john, cathy).

Note:
* No “assert”’s
* No use of variables

Prolog Notes

« atoms: symbolic values of Prolog
— father (bill, mike)

— Strings of letters, digits, and underscores
starting with lower case letter

« variable: unbound entity
— father (X, mike)

— Strings of letters, digits, and underscores
starting with UPPER CASE letter

— Variables are not bound to type by declaration

Prolog Notes

« FACTS: UNCONDITIONAL
ASSERTIONS OF "TRUTH"
(assert(mother(carol, jim))).
— assumed to be true
— contains no variables
— stored in database

Prolog Notes

« RULES: ASSERTIONS from which
conclusions can be drawn if given
conditions are true

(assert((parent(X, Y) :-father(X, Y):
mother (X, ¥)))).
— contains variables for instantiation
—also stored in database

11/29/16

11/29/16

An Example

| 2- (assert(color(banana, yellow))).
| 2- (assert(color(squash, yellow))).
| 2- (assert(color(apple, green))).

| 2- (assert(color(peas, green))).

FACTS
| 2- (assert(fruit(banana))).

| 2- (assert(fruit(apple))).

| 2- (assert(vegetable(squash))).

| 2- (assert(vegetable(peas))).
bob eats green colored vegetables

RULE | 2- (assert((eats(bob, X) :- color(X,
green), vegetable(X)))).

An Example

(assert ((eats(bob, X) :-
color(X, green),

Does bob eat apples ? vegetable(X))).

| ?- eats(bob, apple).
color(apple, green) => match false
vegetable(apple) =>no

Does bob eat squash ?
| ?- eats(bob, squash).

color(squash, green) => no false
What does bob eat ?
| ?- eats(bob, X). therefore X = peas

color(banana, green) => no
color(squash, green) => no
color(apple, green) =>yes
vegetable(apple) =>no
color(peas, green) =>yes
vegetable(peas) =>yes

10

