Logic (or Declarative) Programming Foundations:
Prolog

In Text: Chapter 12

Overview [1]

• Formal logic
• Logic programming
• Prolog
Logic Programming

- To express programs in a form of symbolic logic, and use a logic inferencing process to produce results
 - Symbolic logic is the study of symbolic abstractions that capture the formal features of logical inference
- Logic programs are declarative

Formal Logic

- A **proposition** is a logical statement or query about the state of the “universe”
 - It consists of objects and the relationship between objects
- **Formal logic** was developed to describe propositions, with the goal of allowing those formally stated propositions to be checked for validity
Symbolic Logic

- **Symbolic logic** can be used for three basic needs of formal logic
 - To express propositions,
 - To express the relationship between propositions, and
 - To describe how new propositions can be inferred from other propositions that are assumed to be true

Formal logic & mathematics

- Most of mathematics can be thought of in terms of logic
- The fundamental axioms of number and set theory are the initial set of propositions, which are assumed to be true
- **Theorems** are the additional propositions that can be inferred from the initial set
First-Order Predicate Calculus

• The particular form of symbolic logic that is used for logic programming is called first-order predicate calculus
• It contains propositions and clausal form

Propositions

• The objects in propositions are represented by simple terms
 – Simple terms can be either constants or variables
 – A constant is a symbol that represents an object
 – A variable is a symbol that can represent different objects at different times
Propositions

• The simplest propositions, which are called **atomic propositions**, consist of compound terms.

• A **compound term** represents mathematical relation. It contains
 – a functor: the function symbol that names the relation, and
 – an ordered list of parameters

Compound Terms

• A compound term with a single parameter is a 1-tuple
 – E.g. man(jake)

• A compound term with two parameters is a 2-tuple
 – E.g., like(bob, steak)
Compound Terms

• All of the simple terms in the propositions, such as man, jake, like, bob, and steak, are constants
• They mean whatever we want them to mean
 – E.g., like(bob, steak) may mean
 • Bob likes steak, or
 • steak likes Bob, or
 • Bob is in some way similar to a steak, or
 • Does Bob like steak?
• Propositions can also contain variables, such as man(x)

Compound Propositions

• Two or more atomic propositions, which are connected by logical connectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>(\neg)</td>
<td>(\neg a)</td>
<td>not a</td>
</tr>
<tr>
<td>conjunction</td>
<td>(\cap)</td>
<td>(a \cap b)</td>
<td>a and b</td>
</tr>
<tr>
<td>disjunction</td>
<td>(\cup)</td>
<td>(a \cup b)</td>
<td>a or b</td>
</tr>
<tr>
<td>equivalence</td>
<td>(\equiv)</td>
<td>(a \equiv b)</td>
<td>a is equivalent to b</td>
</tr>
<tr>
<td>implication</td>
<td>(\supset)</td>
<td>(a \supset b)</td>
<td>a implies b</td>
</tr>
<tr>
<td></td>
<td>(\subset)</td>
<td>(a \subset b)</td>
<td>b implies a</td>
</tr>
</tbody>
</table>
Compound Propositions

- Quantifiers—used to bind variables in propositions
 - Universal quantifier: \forall
 $\forall x. P$ — means “for all x, P is true”
 - Existential quantifier: \exists
 $\exists x. P$ — means “there exists a value of x such that P is true”
- Examples
 - $\forall x. (\text{manager}(x) \supset \text{employee}(x))$
 - $\exists x. (\text{mother} (\text{mary}, x) \cap \text{male} (x))$

Clausal Form

- **Clausal form** is a standard form of propositions
- It can be used to simplify computation by an automated system
Clausal Form

• A proposition in clausal form has the following general syntax:
 \[B_1 \cup B_2 \cup \ldots \cup B_n \subset A_1 \cap A_2 \cap \ldots \cap A_m \]

• Consequent is the consequence of the truth of the antecedent

• Meaning
 – If all of the A’s are true, then at least one B is true

Examples

• \(\text{likes(bob, mcintosh)} \subset \text{likes(bob, apple)} \cap \text{apple(mcintosh)} \)

• \(\text{father(john, alvin)} \cup \text{father(john, alice)} \subset \text{father(alvin, bob)} \cap \text{mother(alice, bob)} \cap \text{grandfather(john, bob)} \)
Predicate Calculus

• **Predicate calculus** describes collections of propositions
• **Resolution** is the process of inferring propositions from given propositions
• Resolution can detect any inconsistency in a given set of proposition

An Exemplar Resolution

• If we know:
 older(terry, jon) ⊂ mother(terry, jon)
 wiser(terry, jon) ⊂ older(terry, jon)
• We can infer the proposition:
 wiser(terry, jon) ⊂ mother(terry, jon)
Horn Clauses

- When propositions are used for resolution, only Horn clauses can be used.
- A proposition with zero or one term in the consequent is called a Horn clause.
 - If there is only one term in the consequence, the clause is called a Headed Horn clause.
 - E.g., person(jake) ⊆ man(jake)
 - For stating Inference Rules in Prolog.
 - If there is no term in the consequence, the clause is called a Headless Horn clause.
 - E.g., man(jake)
 - For stating Facts and Queries in Prolog.

Logic Programming Languages

- Logical programming languages are declarative languages.
- Declarative semantics: It is simple to determine the meaning of each statement, and it does not depend on how the statement might be used to solve a problem.
 - E.g., the meaning of a proposition can be concisely determined from the statement itself.
Logic Programming Languages

• Logical Programming Languages are nonprocedural
• Instead of specifying how a result is computed, we describe the desired result and let the computer figure out how to compute it

An Example

• E.g., sort a list
 \[
 \text{sort(new_list, old_list)} \subseteq \text{permute(old_list, new_list)} \cap \text{sorted(new_list)}
 \]
 \[
 \text{sorted(list)} \subseteq \forall j \text{ such that } 1 \leq j < n, \text{ list}(j) \leq \text{list}(j+1)
 \]
where permute is a predicate that returns true if its second parameter is a permutation of the first one
Key Points about Logic Programming

• Nonprocedural programming sounds like the mere production of concise software requirements specifications – It is a fair assessment
• Unfortunately, logic programs that use only resolution face the problems of execution efficiency

Key Points about Logic Programming

• The best form of a logic language has not been determined
• Good methods of creating programs in logic programming languages have not yet been developed