
11/17/16	  

1	  

Logic (or Declarative) 
Programming Foundations: 

Prolog 
In Text: Chapter 12 

Overview [1] 

•  Formal logic 
•  Logic programming 
•  Prolog 

2	  N.	  Meng,	  S.	  Arthur	  



11/17/16	  

2	  

Logic Programming 

•  To express programs in a form of 
symbolic logic, and use a logic 
inferencing process to produce results  
– Symbolic logic is the study of symbolic 

abstractions that capture the formal 
features of logical inference 

•  Logic programs are declarative 

N.	  Meng,	  S.	  Arthur	   3	  

Formal Logic 

•  A proposition is a logical statement or 
query about the state of the “universe” 
– It consists of objects and the relationship 

between objects 
•  Formal logic was developed to describe 

propositions, with the goal of allowing 
those formally stated propositions to be 
checked for validity 

N.	  Meng,	  S.	  Arthur	   4	  



11/17/16	  

3	  

Symbolic Logic 

•  Symbolic logic can be used for three 
basic needs of formal logic 
– To express propositions, 
– To express the relationship between 

propositions, and 
– To describe how new propositions can be 

inferred from other propositions that are 
assumed to be true 

N.	  Meng,	  S.	  Arthur	   5	  

Formal logic & mathematics 

•  Most of mathematics can be thought of 
in terms of logic 

•  The fundamental axioms of number and 
set theory are the initial set of 
propositions, which are assumed to be 
true 

•  Theorems are the additional 
propositions that can be inferred from 
the initial set 

N.	  Meng,	  S.	  Arthur	   6	  



11/17/16	  

4	  

First-Order Predicate Calculus 

•  The particular form of symbolic logic 
that is used for logic programming is 
called first-order predicate calculus 

•  It contains propositions and clausal 
form 
 
 

N.	  Meng,	  S.	  Arthur	   7	  

Propositions 

•  The objects in propositions are 
represented by simple terms  
– Simple terms can be either constants or 

variables 
– A constant is a symbol that represents an 

object 
– A variable is a symbol that can represent 

different objects at different times 

N.	  Meng,	  S.	  Arthur	   8	  



11/17/16	  

5	  

Propositions 

•  The simplest propositions, which are 
called atomic propositions, consist of 
compound terms 

•  A compound term represents 
mathematical relation. It contains 
– a functor: the function symbol that names 

the relation, and  
– an ordered list of parameters 

N.	  Meng,	  S.	  Arthur	   9	  

Compound Terms 

•  A compound term with a single 
parameter is a 1-tuple 
– E.g. man(jake) 

•  A compound term with two parameters 
is a 2-tuple 
– E.g., like(bob, steak) 

N.	  Meng,	  S.	  Arthur	   10	  



11/17/16	  

6	  

Compound Terms 
•  All of the simple terms in the propositions, 

such as man, jake, like, bob, and steak, are 
constants 

•  They mean whatever we want them to mean 
– E.g., like(bob, steak) may mean 
•  Bob likes steak, or 
•  steak likes Bob, or 
•  Bob is in some way similar to a steak, or  
•  Does Bob like steak? 

•  Propositions can also contain variables, such 
as man(x) 

N.	  Meng,	  S.	  Arthur	   11	  

Compound Propositions 

•  Two or more atomic propositions, which 
are connected by logical connectors 

N.	  Meng,	  S.	  Arthur	   12	  

Name           Symbol       Example     Meaning 
negation           ¬       ¬a         not a 
conjunction      ∩        a ∩ b        a and b 
disjunction       ∪	          a	  ∪	  b        a or b 
equivalence       ≡               a ≡ b        a is equivalent to b 
implication        ⊃        a ⊃ b        a implies b 

          ⊂         a ⊂ b        b implies a 



11/17/16	  

7	  

Compound Propositions 

•  Quantifiers—used to bind variables in 
propositions 
– Universal quantifier: ∀ 

 ∀x.P  —  means “for all x, P is true” 
–  Existential quantifier: ∃ 

 ∃x.P  —  means  “there exists a value of x such 
that P is true” 
– Examples 
• ∀x.(manager(x) ⊃ employee(x)) 
• ∃x.(mother(mary,x)) ∩ male (x)) 

N.	  Meng,	  S.	  Arthur	   13	  

Clausal Form 

•  Clausal form is a standard form of 
propositions 

•  It can be used to simplify computation 
by an automated system 

N.	  Meng,	  S.	  Arthur	   14	  



11/17/16	  

8	  

Clausal Form 

•  A proposition in clausal form has the following 
general syntax: 
 B1 ∪ B2 ∪ ... ∪ Bn ⊂ A1 ∩ A2 ∩ ... ∩ Am 
  

•  Consequent is the consequence of the 
truth of the antecedent 

•  Meaning 
– If all of the A’s are true, then at least one 

B is true 

N.	  Meng,	  S.	  Arthur	   15	  

antecedent consequent 

Examples 

•  likes(bob, mcintosh) ⊂ likes(bob, apple) 
∩ apple(mcintosh) 

•  father(john, alvin) ∪ father(john, alice) 
⊂  father(alvin, bob) ∩ mother(alice, 
bob) ∩ grandfather(john, bob) 

N.	  Meng,	  S.	  Arthur	   16	  



11/17/16	  

9	  

Predicate Calculus 

•  Predicate calculus describes collections 
of propositions 

•  Resolution is the process of inferring 
propositions from given propositions 

•  Resolution can detect any inconsistency 
in a given set of proposition 

N.	  Meng,	  S.	  Arthur	   17	  

An Exemplar Resolution 

•  If we know: 
 older(terry, jon) ⊂ mother(terry, jon) 

    wiser(terry, jon) ⊂ older(terry, jon) 
•  We can infer the proposition: 

 wiser(terry, jon) ⊂ mother(terry, jon) 

N.	  Meng,	  S.	  Arthur	   18	  



11/17/16	  

10	  

Horn Clauses 
•  When propositions are used for resolution, 

only Horn clauses can be used 
•  A proposition with zero or one term in the 

consequent is called a Horn clause 
– If there is only one term in the consequence, the 

clause is called a Headed Horn clause 
•  E.g., person(jake) ⊂  man(jake) 
•  For stating Inference Rules in Prolog 

– If there is no term in the consequence, the 
clause is called a Headless Horn clause 
•  E.g., man(jake) 
•  For stating Facts and Queries in Prolog 

N.	  Meng,	  S.	  Arthur	   19	  

Logic Programming Languages 

•  Logical programming languages are 
declarative languages 

•  Declarative semantics: It is simple to 
determine the meaning of each 
statement, and it does not depend on 
how the statement might be used to 
solve a problem 
– E.g., the meaning of a proposition can be 

concisely determined from the statement 
itself 

N.	  Meng,	  S.	  Arthur	   20	  



11/17/16	  

11	  

Logic Programming Languages 

•  Logical Programming Languages are 
nonprocedural 

•  Instead of specifying how a result is 
computed, we describe the desired 
result and let the computer figure out 
how to compute it 

N.	  Meng,	  S.	  Arthur	   21	  

An Example 

•  E.g., sort a list 
  sort(new_list, old_list) ⊂ permute(old_list, 
new_list) ∩ sorted(new_list) 
  sorted(list) ⊂ ∀j such that 1 ≤ j < n, list(j) 
≤ list(j+1) 

where permute is a predicate that returns 
true if its second parameter is a 
permutation of the first one 

N.	  Meng,	  S.	  Arthur	   22	  



11/17/16	  

12	  

Key Points about Logic Programming 

•  Nonprocedural programming sounds like 
the mere production of concise 
software requirements specifications 
– It is a fair assessment 

•  Unfortunately, logic programs that use 
only resolution face the problems of 
execution efficiency 

N.	  Meng,	  S.	  Arthur	   23	  

Key Points about Logic Programming 

•  The best form of a logic language has 
not been determined 

•  Good methods of creating programs in 
logic programming languages have not 
yet been developed 

N.	  Meng,	  S.	  Arthur	   24	  


