
11/5/16	

1	

FP Foundations, Scheme

In Text: Chapter 11

Outline

•  Mathematical foundations
•  Functional programming
•  λ-calculus
•  LISP
•  Scheme

2	 N.	 Meng,	 S.	 Arthur	

11/5/16	

2	

Imperative Languages
•  We have been discussing imperative

languages
– C/C++, Java, and Pascal are imperative languages
– They follow the von Neumman architecture [1]

3	

Functional Programming

•  A different way of looking at things
– It is based on mathematical functions
– It is supported by functional, and

applicative, programming languages
•  LISP, ML, Haskell

4	 N.	 Meng,	 S.	 Arthur	

11/5/16	

3	

Mathematical Foundations

•  A mathematical function is a mapping
of members from one set to another set
– The “input” set is called the domain
– The “output” set is called the range

•  A mathematical function defines a value,
rather than specifying a sequence of
operations on values in memory to
produce a value

5	 N.	 Meng,	 S.	 Arthur	

Mathematical Foundations

•  The evaluation order of mapping
expressions is controlled by recursion
and conditional expressions, rather than
by the sequencing and iterative
repetition

•  Functions do not have states
– They have no side effects
– They always produce the same output given

the same input parameters

6	 N.	 Meng,	 S.	 Arthur	

11/5/16	

4	

Simple Functions

•  Usual form:
function name + a list of parameters in
parentheses + mapping expression

•  E.g., cube(x) = x * x * x, where
– both the domain and range sets are real

numbers, and
– x can represent any member of the domain set,

but it is fixed to represent one specific
element during the expression evaluation

7	 N.	 Meng,	 S.	 Arthur	

Function Application

•  It is specified by paring the function
name with a particular element of the
domain set

•  The range element is obtained by
evaluating the function-mapping
expression with the domain element
substituted for the particular element
– Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0

8	 N.	 Meng,	 S.	 Arthur	

11/5/16	

5	

Functional Forms

•  A higher-order function, or functional
form, is one that either takes functions
as parameters, or yields a function as
its result, or both

•  Two common functional forms
– Function composition
– Apply-to-all

9	 N.	 Meng,	 S.	 Arthur	

Function Composition

•  Function composition has two functional
parameters and yields a function whose
value is the first function applied to the
result of the second

•  It is written as an expression, using a ο
operator (called “circle” or “round”)
– E.g., h = f ο g

 if f(x) = x + 2, and
 g(x) = 3 * x
 then h(x) = f(g(x)) = (3 * x) + 2

10	 N.	 Meng,	 S.	 Arthur	

11/5/16	

6	

Apply-to-all

•  Apply-to-all takes a single function as a
parameter

•  If applied to a list of arguments, apply-to-
all applies its functional parameter to each
element of the list, and then collects
results in a list or sequence

•  It is denoted by α
– E.g., h(x) = x * x, then

 α(h, (2, 3, 4)) = (4, 9, 16)

11	 N.	 Meng,	 S.	 Arthur	

Lambda expression

•  Early theoretical work on functions
separated the task of defining a function
from that of naming the function

•  Lambda notation, λ, provides a method
for defining nameless functions

•  A lambda expression is a function, which
specifies the parameters, and the
mapping expression
– E.g., λ(x)x * x * x

12	 N.	 Meng,	 S.	 Arthur	

11/5/16	

7	

Lambda-Calculus

•  In the mid 1960s, Peter Landin observed
that a complex programming language
can be understood by formulating it as a
tiny core calculus capturing the
language’s essential mechanisms,
together with a collection of convenient
derived forms whose behavior is
understood by translating them into the
core

N.	 Meng,	 S.	 Arthur	 13	

Lambda-Calculus

•  The core language used by Landin was
the lambda-calculus, a formal system
invented in the 1920s by Alonzo Church
in which all computation is reduced to
the basic operations of function
definition and application

N.	 Meng,	 S.	 Arthur	 14	

11/5/16	

8	

factorial Example

•  factorial(n) =
 if n = 0 then 1 else n * factorial(n -1)

•  The corresponding λ-calculs term is:
 factorial(n) =
λn. if n=0 then 1 else n * factorial(n -1)

•  Meaning
– For each nonnegative number n, instantiating

the function with the argument n yields the
factorial of n as result

N.	 Meng,	 S.	 Arthur	 15	

λ-calculus

•  Lambda-calculus embodies function
definition and application in the purest
possible form

•  In the lambda-calculus, everything is a
function
– the arguments accepted by functions are

themselves functions, and
– the result returned by a function is another

function
N.	 Meng,	 S.	 Arthur	 16	

11/5/16	

9	

Syntax of λ-calculus

t ::= x (a variable)
 | λx.t (a function)
 | t t (function application)
•  The syntax of lambda-calculus comprises

three sorts of terms
– Variable itself is a term
– The abstraction of a variable x from a term t

is a term
– The application of term t1 to another term t2,

is a term

N.	 Meng,	 S.	 Arthur	 17	

Two conventions of writing lambda-
terms

•  Application is left associative
– Given s t u, the calculation is (s t) u

N.	 Meng,	 S.	 Arthur	 18	

apply

apply

s t

u

11/5/16	

10	

Two Conventions

•  The body of abstraction is extended to
right as much as possible
– Given λx. λy. x y x, the calculation is λx.

(λy. ((x y) x))

N.	 Meng,	 S.	 Arthur	 19	

λx

λy

x y

apply x

apply

Scope

•  An occurrence of the variable x is said
to be bound when it occurs in the body t
of an abstraction λx. t

•  An occurrence of x is free if it appears
in a position where it is not bound by an
enclosing abstraction on x
– In x y, and λy. x y, x is free
– In λx. x, and λz. λx. λy. x (y z), x is bound

N.	 Meng,	 S.	 Arthur	 20	

