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FP Foundations, Scheme 

In Text: Chapter 11 

Outline 

•  Mathematical foundations 
•  Functional programming 
•  λ-calculus 
•  LISP 
•  Scheme 
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Imperative Languages 
•  We have been discussing imperative 

languages 
– C/C++, Java, and Pascal are imperative languages 
– They follow the von Neumman architecture [1] 
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Functional Programming 

•  A different way of looking at things 
– It is based on mathematical functions 
– It is supported by functional, and 

applicative, programming languages 
•  LISP, ML, Haskell 
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Mathematical Foundations 

•  A mathematical function is a mapping 
of members from one set to another set 
– The “input” set is called the domain 
– The “output” set is called the range 

•  A mathematical function defines a value, 
rather than specifying a sequence of 
operations on values in memory to 
produce a value 
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Mathematical Foundations 

•  The evaluation order of mapping 
expressions is controlled by recursion 
and conditional expressions, rather than 
by the sequencing and iterative 
repetition  

•  Functions do not have states 
– They have no side effects 
– They always produce the same output given 

the same input parameters 
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Simple Functions 

•  Usual form:  
function name + a list of parameters in 
parentheses + mapping expression 

•  E.g., cube(x) = x * x * x, where 
– both the domain and range sets are real 

numbers, and 
– x can represent any member of the domain set, 

but it is fixed to represent one specific 
element during the expression evaluation 
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Function Application 

•  It is specified by paring the function 
name with a particular element of the 
domain set 

•  The range element is obtained by 
evaluating the function-mapping 
expression with the domain element 
substituted for the particular element 
– Cube(2.0) = 2.0 * 2.0 * 2.0 = 8.0 

8	  N.	  Meng,	  S.	  Arthur	  



11/5/16	  

5	  

Functional Forms 

•  A higher-order function, or functional 
form, is one that either takes functions 
as parameters, or yields a function as 
its result, or both 

•  Two common functional forms 
– Function composition 
– Apply-to-all 
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Function Composition 

•  Function composition has two functional 
parameters and yields a function whose 
value is the first function applied to the 
result of the second 

•  It is written as an expression, using a ο 
operator (called “circle” or “round”) 
– E.g., h = f ο g 

        if f(x) = x + 2, and  
    g(x) = 3 * x 
    then h(x) = f(g(x)) = (3 * x) + 2 
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Apply-to-all 

•  Apply-to-all takes a single function as a 
parameter 

•  If applied to a list of arguments, apply-to-
all applies its functional parameter to each 
element of the list, and then collects 
results in a list or sequence 

•  It is denoted by α 
– E.g., h(x) = x * x, then 

   α(h, (2, 3, 4)) = (4, 9, 16)     
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Lambda expression  

•  Early theoretical work on functions 
separated the task of defining a function 
from that of naming the function 

•  Lambda notation, λ, provides a method 
for defining nameless functions 

•  A lambda expression is a function, which  
specifies the parameters, and the 
mapping expression  
– E.g., λ(x)x * x * x 
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Lambda-Calculus 

•  In the mid 1960s, Peter Landin observed 
that a complex programming language 
can be understood by formulating it as a 
tiny core calculus capturing the 
language’s essential mechanisms, 
together with a collection of convenient 
derived forms whose behavior is 
understood by translating them into the 
core 
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Lambda-Calculus 

•  The core language used by Landin was 
the lambda-calculus, a formal system 
invented in the 1920s by Alonzo Church 
in which all computation is reduced to 
the basic operations of function 
definition and application 
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factorial Example 

•  factorial(n) =  
 if n = 0 then 1 else n * factorial(n -1) 

•  The corresponding λ-calculs term is: 
 factorial(n) =  
λn. if n=0 then 1 else n *  factorial(n -1) 

•  Meaning 
– For each nonnegative number n, instantiating 

the function with the argument n yields the 
factorial of n as result 
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λ-calculus 

•  Lambda-calculus embodies function 
definition and application in the purest 
possible form 

•  In the lambda-calculus, everything is a 
function 
– the arguments accepted by functions are 

themselves functions, and  
– the result returned by a function is another 

function 
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Syntax of λ-calculus 

t ::= x   (a variable)  
      | λx.t  (a function)  
      | t t   (function application) 
•  The syntax of lambda-calculus comprises 

three sorts of terms 
– Variable itself is a term 
– The abstraction of a variable x from a term t 

is a term 
– The application of term t1 to another term t2, 

is a term 
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Two conventions of writing lambda-
terms 

•  Application is left associative 
– Given s t u, the calculation is (s t) u 
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Two Conventions 

•  The body of abstraction is extended to 
right as much as possible 
– Given λx. λy. x y x, the calculation is λx. 

(λy. ((x y) x)) 
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λx 

λy 

x y 

apply x 

apply 

Scope 

•  An occurrence of the variable x is said 
to be bound when it occurs in the body t 
of an abstraction λx. t 

•  An occurrence of x is free if it appears 
in a position where it is not bound by an 
enclosing abstraction on x 
– In x y, and λy. x y, x is free  
– In λx. x, and λz. λx. λy. x (y z), x is bound 

N.	  Meng,	  S.	  Arthur	   20	  


