
10/27/16	
  

1	
  

Local Variable Allocation 

•  Local scalar variables are bound to 
storage within an activation record 
instance 

•  Local variables that are structures are 
sometimes allocated elsewhere, and only 
leave their descriptors and a pointer to 
the storage as part of the activation 
record 

N.	
  Meng,	
  S.	
  Arthur	
   1	
  

An Example 

void sub(float total, int part) { 
 int list[5]; 
 float sum; 
 … 

} 

N.	
  Meng,	
  S.	
  Arthur	
   Return	
  address	
  

Dynamic	
  link	
  

Parameter	
  

Parameter	
  

Local	
  

Local	
  

Local	
  

Local	
  

Local	
  

Local	
  

total	
  

part	
  

list[0]	
  

list[1]	
  

list[2]	
  

list[3]	
  

list[4]	
  

sum	
  

2	
  



10/27/16	
  

2	
  

Recursion 

•  Function recursion means that a 
function can eventually call itself 

•  Recursion adds the possibility of 
multiple simultaneous activations of a 
subroutine at a given time, with at least 
one call from outside the subroutine, 
and one or more recursive calls 

•  Each activation requires its own 
activation record instance 

N.	
  Meng,	
  S.	
  Arthur	
   3	
  

An Example 

int factorial(int n) { 
 if (n <= 1)   
  return 1; 
 else return (n * factorial(n - 1)); 

} 
void main() { 

 int value; 
 value = factorial (3); 

} 

N.	
  Meng,	
  S.	
  Arthur	
   4	
  

How does the 
stack change?	
  



10/27/16	
  

3	
  

Implementing nested subroutines 

•  Some static-scoped languages use 
stack-dynamic local variables and allow 
subroutines to be nested 
– FORTRAN 95, Ada, Python, and JavaScript 

•  Challenge 
– How to access nonlocal variables? 

N.	
  Meng,	
  S.	
  Arthur	
   5	
  

Two-step access process 

•  Find the activation record instance on 
the stack where the variable was 
allocated  
– more challenging and more difficult 

•  Use the local_offset of the variable to 
access it 
–  local_offset describes the offset from the 

beginning/bottom of an activation record 

N.	
  Meng,	
  S.	
  Arthur	
   6	
  



10/27/16	
  

4	
  

Key Observations 

•  In a given subroutine, only variables 
that are declared in static ancestor 
scopes are visible and can be accessed 

•  Activation record instances of all static 
ancestors are always on the stack when 
variables in them are referenced by a 
nested subroutine: A subroutine is 
callable only when all its static 
ancestors are active 

N.	
  Meng,	
  S.	
  Arthur	
   7	
  

Finding Activation Record Instance 

•  Static chaining 
– A new pointer, static link (static scope 
pointer or access link), is used to point to 
the bottom of an activation record instance 
of the static parent 

– The pointer is used for access to nonlocal 
variables 

– Typically, the static link appears below 
parameters in an activation record 

N.	
  Meng,	
  S.	
  Arthur	
   8	
  



10/27/16	
  

5	
  

Finding Activation Record Instance 

•  A static chain is a chain of 
static links that connect the 
activation record instances of 
all static ancestors for an 
executing subroutine 

•  This chain can be used to 
implement nonlocal variable 
access 

N.	
  Meng,	
  S.	
  Arthur	
   9	
  

Local	
  variables	
  

Parameters	
  

Dynamic	
  link	
  

StaMc	
  link	
  

Return	
  address	
  

Finding Activation Record Instance 

•  With static links, finding the correct 
activation record instance is simple 
– Search the static chain until a static 

ancestor is found to contain the variable 
•  However, the implementation can be 

even simpler 
– Compiler identifies both nonlocal 

references, and the length of static chain 
to follow to reach the correct record 

N.	
  Meng,	
  S.	
  Arthur	
   10	
  



10/27/16	
  

6	
  

Finding Activation Record Instance 
•  static_depth is an integer associated with a 

static scope that indicates how deeply it is 
nested in the outermost scope 

•  The difference between the static_depth 
of a nonlocal reference and the 
static_depth of the variable definition is 
called nesting_depth, or chain_depth, of 
the reference 

•  Each reference is represented with  an 
ordered integer pair (chain_offset, 
local_offset) 

N.	
  Meng,	
  S.	
  Arthur	
   11	
  

An Ada Example [4] 

N.	
  Meng,	
  S.	
  Arthur	
   12	
  

procedure Main_2 is

What is the static 
depth for each 
procedure? 
What is the 
representation of 
A at points 1, 2, 
and 3? 



10/27/16	
  

7	
  

Stack Contents 

N.	
  Meng,	
  S.	
  Arthur	
  

procedure Main_2 is


