10/25/16

Implementing Subroutines

In Text: Chapter 9

Outline [1]

» General semantics of calls and returns
« Implementing "simple” subroutines
e Call Stack

« Implementing subroutines with stack-
dynamic local variables

 Nested programs

N. Meng, S. Arthur 2

10/25/16

General Semantics of Calls and
Returns

* The subroutine call and return
operations are together called
subroutine linkage

 The implementation of subroutines must
be based on the semantics of the
subroutine linkage

Semantics of a subroutine call

Save the execution status of the
current program unit

Pass the parameters
Pass the return address to the callee
Transfer control to the callee

Semantics of a subroutine return

 If there are pass-by-value-result or
out-mode parameters, the current
values of those parameters are moved
to the corresponding actual parameters

* Move the return value to a place
accessible to the caller

« The execution status of the caller is
restored

« Control is transferred back to the caller

Storage of Information

* The call and return actions require
storage for the following:
— Status information about the caller
— Parameters
— Return address
— Return value for functions
— Local variables

10/25/16

10/25/16

Implementing “simple” subroutines

 Simple subroutines are those that
cannot be nested and all local variables
are static

* A simple subroutine consists of two
parts: code and data
— Code: constant (instruction space)

— Data: can change when the subroutine is
executed (data space)

— Both parts have fixed sizes

Activation Record

« The format, or layout, of the data part
is called an activation record, because
the data is relevant to an activation, or
execution, of the subroutine

« The form of an activation record is
static

 An activation record instance is a
concrete example of an activation
record, corresponding to one execution

10/25/16

An activation record for simple
subroutine

Local variables

Parameters

Return address

« Since the activation record instance of
a "simple” subprogram has fixed size, it
can be statically allocated

* Actually, it could be attached to the
code part of the subprogram

The code and activation records of a
program with simple subroutines

* Four program units—MAIN, A, B, and C
« MAIN calls A, B,and C

* Originally, all four programs may be
compiled at different times individually

* When each program is compiled, its
machine code, along with a list of
references to external subprograms are
written to a file

How is the code linked?

A linker is called for MAIN to
create an executable program
— Linker is part of the OS -
— Linker is also called loader, linker/
loader, or link editor

— It finds and loads all referenced
subroutines, including code and
activation records, info memory)

— It sets the target addresses of calls
to those subroutines’ entry .
addresses

11

Assumptions so far...

* All local variables are statically
allocated

* No function recursion
* No value returned from any function

10/25/16

Call Stack [2]

* Call stack is a stack data structure
that stores information about the active
subroutines of a program

« Also known as execution stack, control
stack, runtime-stack, or machine stack

* Large array which typically grows
downwards in memory towards lower
addresses, shrinks upwards

N. Meng, S. Arthur 13

Call Stack

* Push(rl):
stack_pointer--;
M[stack_pointer] = rl;

* rl = Pop();
rl = M[stack_pointer];
stack_pointer++;

10/25/16

10/25/16

Call Stack

When a function is invoked, its activation
record is created dynamically and pushed
onto the stack

When a function returns, its activation
record is popped from the stack

The activation record on stack is also called
stack frame

Stack pointer(sp): points to the frame top
Frame pointer(fp): points to the frame base

Implementing subroutines with
stack-dynamic local variables

« One important advantage of stack-
dynamic local variables is support for
recursion

« The implementation requires more
complex activation records
— The compiler must generate code to cause

the implicit allocation and deallocation of
local variables

Local variables

Mor‘e Complex Parameters T
GCTiVGTion r‘ecor‘ds Dynamic link Stack top

Return address

« Since the return address, dynamic link,
and parameters are placed in the
activation record instance by the caller,
these entries must appear first

* Local variables are allocated and
possibly initialized in the callee, so they
appear last

Dynamic Link = previous sp

« Used in the destruction of the current
activation record instance when the
procedure completes its execution

* To restore the sp in previous frame
(caller)

* The collection of dynamic links in the
stack at a given time is called the dynamic
chain, or call chain, which represents the
dynamic history of how execution got to
its current position

10/25/16

Why do we need
dynamic links?

Temporaries

Local variables

Parameters T

Dynamic link Stack top

Return address

« The dynamic link is required in some
cases, because there are other allocations
from the stack by a subroutine beyond its
activation record, such as temporaries

 Even though the activation record size is
known, we cannot simply subtract the size
from the stack pointer to remove the

activation record

* Access nonlocal variables in dynamic

scoped lanquages

An Example without Recursion

void funl(float r) {

ints, t;
I 1
fun2(s)
void fun2(int x) {
inty;
U SRR 2
fun3(y)
}
void fun3(int q) { ARI
é ————————— 3 for funi 1
void main() {
float p; ARI
;‘”unl(p):

L | Return (to m

formain \ *p fo

« Call sequence:
main -> funl -> fun2 -> fun3

« What is the stack content at
points labeled as 1, 2, and 3?

Local Top

Local
Parameter + for
Dynamic link ®1+—

ain)

at Point 1

10/25/16

10

ARI
for funi

ARI
for main

{

ARI
for fun2 9
Top
Local £
Local
S AR
Parameter

r for funi T

Dynamic link @

Return (to main)

Local

Parameter

Dynamic link

|| Return (to fun1)

Local

Local

Parameter

Parameter q
ARI L
-
for fun3 Dynamic link
Return (to fun2)
To [Local
y P Y
« Parameter
ARI Dynamic link ®
for fun2
Return (to funi)
Local
€ t
Local
N ARI i
3 Parameter r
r for funl

Dynamic link @

J

Local

P formain

at Point 1

L | Return (to main)

Dynamic link e
Return (to main) ﬂl

Local

, ARl f
P formain {

Local

o 4

at Point 2

ARI = activation record instance

N. Meng, S. Arthur

at Point 3

21

Top

10/25/16

11

