
10/25/16	

1	

Implementing Subroutines

In Text: Chapter 9

Outline [1]

•  General semantics of calls and returns
•  Implementing “simple” subroutines
•  Call Stack
•  Implementing subroutines with stack-

dynamic local variables
•  Nested programs

N.	
 Meng,	
 S.	
 Arthur	
 2	

10/25/16	

2	

General Semantics of Calls and
Returns

•  The subroutine call and return
operations are together called
subroutine linkage

•  The implementation of subroutines must
be based on the semantics of the
subroutine linkage

N.	
 Meng,	
 S.	
 Arthur	
 3	

Semantics of a subroutine call

•  Save the execution status of the
current program unit

•  Pass the parameters
•  Pass the return address to the callee
•  Transfer control to the callee

N.	
 Meng,	
 S.	
 Arthur	
 4	

10/25/16	

3	

Semantics of a subroutine return

•  If there are pass-by-value-result or
out-mode parameters, the current
values of those parameters are moved
to the corresponding actual parameters

•  Move the return value to a place
accessible to the caller

•  The execution status of the caller is
restored

•  Control is transferred back to the caller

N.	
 Meng,	
 S.	
 Arthur	
 5	

Storage of Information

•  The call and return actions require
storage for the following:
– Status information about the caller
– Parameters
– Return address
– Return value for functions
– Local variables

N.	
 Meng,	
 S.	
 Arthur	
 6	

10/25/16	

4	

Implementing “simple” subroutines

•  Simple subroutines are those that
cannot be nested and all local variables
are static

•  A simple subroutine consists of two
parts: code and data
– Code: constant (instruction space)
– Data: can change when the subroutine is

executed (data space)
– Both parts have fixed sizes

N.	
 Meng,	
 S.	
 Arthur	
 7	

Activation Record

•  The format, or layout, of the data part
is called an activation record, because
the data is relevant to an activation, or
execution, of the subroutine

•  The form of an activation record is
static

•  An activation record instance is a
concrete example of an activation
record, corresponding to one execution

N.	
 Meng,	
 S.	
 Arthur	
 8	

10/25/16	

5	

An activation record for simple
subroutine

N.	
 Meng,	
 S.	
 Arthur	
 9	

•  Since the activation record instance of
a “simple” subprogram has fixed size, it
can be statically allocated

•  Actually, it could be attached to the
code part of the subprogram

The code and activation records of a
program with simple subroutines

•  Four program units—MAIN, A, B, and C
•  MAIN calls A, B, and C
•  Originally, all four programs may be

compiled at different times individually
•  When each program is compiled, its

machine code, along with a list of
references to external subprograms are
written to a file

N.	
 Meng,	
 S.	
 Arthur	
 10	

10/25/16	

6	

How is the code linked?

•  A linker is called for MAIN to
create an executable program
– Linker is part of the OS
– Linker is also called loader, linker/

loader, or link editor
– It finds and loads all referenced

subroutines, including code and
activation records, into memory

– It sets the target addresses of calls
to those subroutines’ entry
addresses

N.	
 Meng,	
 S.	
 Arthur	
 11	

Assumptions so far…

•  All local variables are statically
allocated

•  No function recursion
•  No value returned from any function

N.	
 Meng,	
 S.	
 Arthur	
 12	

10/25/16	

7	

Call Stack [2]

•  Call stack is a stack data structure
that stores information about the active
subroutines of a program

•  Also known as execution stack, control
stack, runtime-stack, or machine stack

•  Large array which typically grows
downwards in memory towards lower
addresses, shrinks upwards

N.	
 Meng,	
 S.	
 Arthur	
 13	

Call Stack

•  Push(r1):
 stack_pointer--;
 M[stack_pointer] = r1;

•  r1 = Pop();
 r1 = M[stack_pointer];
 stack_pointer++;

N.	
 Meng,	
 S.	
 Arthur	
 14	

10/25/16	

8	

Call Stack
•  When a function is invoked, its activation

record is created dynamically and pushed
onto the stack

•  When a function returns, its activation
record is popped from the stack

•  The activation record on stack is also called
stack frame

•  Stack pointer(sp): points to the frame top
•  Frame pointer(fp): points to the frame base

N.	
 Meng,	
 S.	
 Arthur	
 15	

Implementing subroutines with
stack-dynamic local variables

•  One important advantage of stack-
dynamic local variables is support for
recursion

•  The implementation requires more
complex activation records
– The compiler must generate code to cause

the implicit allocation and deallocation of
local variables

N.	
 Meng,	
 S.	
 Arthur	
 16	

10/25/16	

9	

More complex
activation records

N.	
 Meng,	
 S.	
 Arthur	
 17	

•  Since the return address, dynamic link,
and parameters are placed in the
activation record instance by the caller,
these entries must appear first

•  Local variables are allocated and
possibly initialized in the callee, so they
appear last

Dynamic Link = previous sp
•  Used in the destruction of the current

activation record instance when the
procedure completes its execution

•  To restore the sp in previous frame
(caller)

•  The collection of dynamic links in the
stack at a given time is called the dynamic
chain, or call chain, which represents the
dynamic history of how execution got to
its current position

N.	
 Meng,	
 S.	
 Arthur	
 18	

10/25/16	

10	

Why do we need
dynamic links?

•  The dynamic link is required in some
cases, because there are other allocations
from the stack by a subroutine beyond its
activation record, such as temporaries

•  Even though the activation record size is
known, we cannot simply subtract the size
from the stack pointer to remove the
activation record

•  Access nonlocal variables in dynamic
scoped languages N.	
 Meng,	
 S.	
 Arthur	
 19	

Temporaries	

An Example without Recursion
void fun1(float r) {

 int s, t;
 … ß---------1
 fun2(s);

}
void fun2(int x) {

 int y;
 … ß--------2
 fun3(y);
 …

}
void fun3(int q) {

 … ß---------3
}
void main() {

 float p;
 …
 fun1(p);

} N.	
 Meng,	
 S.	
 Arthur	
 20	

•  Call sequence:
main -> fun1 -> fun2 -> fun3

•  What is the stack content at
points labeled as 1, 2, and 3?

10/25/16	

11	

N.	
 Meng,	
 S.	
 Arthur	
 21	

p	
 p	
 p	

