
10/20/16	

1	

An Example: pass-by-value-result vs.
pass-by-reference

program foo;
var x: int;

 procedure p(y: int);
 begin
 y := y + 1;
 y := y * x;
 end

begin
 x := 2;

 p(x);
 print(x);
end

N.	
 Meng,	
 S.	
 Arthur	
 1	

pass-­‐by-­‐value-­‐result	
 pass-­‐by-­‐reference	

x	
 y	
 x	
 y	

(entry	
 to	
 p)	

(a5er	
 y:=	
 y	
 +	
 1)	

(at	
 p’s	
 return)	

2	
 2	
 2	
 2	

2	
 3	
 3	
 3	

6	
 6	
 9	
 9	

Aliases can be created due to pass-
by-reference

•  Given void fun(int &first, int &second),
– Actual parameter collisions
•  E.g., fun(total, total) makes first and second to be

aliases
– Array element collisions
•  E.g., fun(list[i], list[j]) can cause first and second

to be aliases if i == j
– Collisions between formals and globals
•  E.g., int* global;

 void main() { … sub(global); … }
 void sub(int* param) { … }

•  Inside sub, param and global are aliases
N.	
 Meng,	
 S.	
 Arthur	
 2	

10/20/16	

2	

Pass-by-Name

•  Implement an inout-mode parameter
transition method

•  The body of a function is interpreted at
call time after textually substituting the
actual parameters into the function body

•  The evaluation method is similar to C
preprocessor macros

N.	
 Meng,	
 S.	
 Arthur	
 3	

An Example in Algol

procedure double(x);
 real x;

begin
 x := x * 2;

end;
Therefore, double(C[j]) is interpreted as
C[j] = C[j] * 2

N.	
 Meng,	
 S.	
 Arthur	
 4	

10/20/16	

3	

Another Example

•  Assume k is a global variable,
procedure sub2(x: int; y: int; z: int);
begin

 k := 1;
 y := x;
 k := 5;
 z := x;

end;
•  How is the function call sub2(k+1, j, i)

interpreted?

N.	
 Meng,	
 S.	
 Arthur	
 5	

Disadvantages of Pass-by-Name

•  Very inefficient references
•  Too tricky; hard to read and understand

N.	
 Meng,	
 S.	
 Arthur	
 6	

10/20/16	

4	

Implementing Parameter-Passing
Methods

•  Most languages use the runtime stack to
pass parameters
– Pass-by-value
•  Values are copied into stack locations

– Pass-by-result
•  Values assigned to the actual parameters are placed

in the stack
– Pass-by-value-result
•  A combination of pass-by-value and pass-by-result

– Pass-by-reference
•  Parameter addresses are put in the stack

N.	
 Meng,	
 S.	
 Arthur	
 7	

An Example

•  Function header: void sub (int a, int b,
int c, int d)
– a: pass by value
– b: pass by result
– c: pass by value-result
– d: pass by reference

•  Function call: main() calls sub(w, x, y, z)

N.	
 Meng,	
 S.	
 Arthur	
 8	

10/20/16	

5	

N.	
 Meng,	
 S.	
 Arthur	
 9	

Design Considerations for Parameter
Passing

•  Efficiency
•  Whether one-way or two-way data

transfer is needed

N.	
 Meng,	
 S.	
 Arthur	
 10	

10/20/16	

6	

One Software Engineering Principle

•  Access by subroutine code to data outside
the subroutine should be minimized
– In-mode parameters are used whenever no

data is returned to the caller
– Out-mode parameters are used when no data is

transferred to the callee but the subroutine
must transmit data back to the caller

– Inout-mode parameters are used only when
data must move in both directions between the
caller and callee

N.	
 Meng,	
 S.	
 Arthur	
 11	

A practical consideration in conflict
with the principle

•  Pass-by-reference is the fastest way to
pass structures of significant size

N.	
 Meng,	
 S.	
 Arthur	
 12	

10/20/16	

7	

Parameters that are subroutines

•  In some situations, subroutine names
can be sent as parameters to other
subroutines

•  Only the transmission of computation is
necessary, which could be done by
passing a functional pointer

N.	
 Meng,	
 S.	
 Arthur	
 13	

Two complications with subroutine
parameters

•  Are parameters type checked?
– Early Pascal and FORTRAN 77 do not type

check
– Later versions of Pascal, Modula-2, and

FORTRAN 90 do
– C and C++ do

N.	
 Meng,	
 S.	
 Arthur	
 14	

10/20/16	

8	

Two complications with subroutine
parameters

•  What referencing environment should be
used for executing the passed subroutine?
– The environment of the call statement that

enacts the passed subroutine(shallow binding)
– The environment of the definition of the

subroutine(deep binding)
– The environment of the call statement that

passed it as an actual parameter(ad hoc
binding)

N.	
 Meng,	
 S.	
 Arthur	
 15	

An Example function sub1() {
 var x;
 function sub2() {
 alert (x);
 };
 function sub3() {
 var x;
 x = 3;
 sub4(sub2);

 };
 function sub4(subx) {
 var x;
 x = 4;
 subx();
 };
 x = 1;
 sub3();

};
N.	
 Meng,	
 S.	
 Arthur	
 16	

•  For shallow binding, the
referencing environment
of sub2 is sub4

•  For deep binding, the
referencing environment
of sub2 is sub1

•  For ad hoc binding, the
referencing environment
of sub2 is sub3

10/20/16	

9	

What is the output of alert(x)?

•  Shallow binding?

•  Deep binding?

•  Ad hoc binding?

N.	
 Meng,	
 S.	
 Arthur	
 17	

Referencing Environment for
Subroutine Parameters

•  Deep binding and ad hoc binding can be
the same when a subroutine is declared
and passed by the same subroutine

•  In reality, ad hoc binding has never been
used

•  Static-scoped languages usually use deep
binding

•  Dynamic-scoped languages usually use
shallow binding

N.	
 Meng,	
 S.	
 Arthur	
 18	

10/20/16	

10	

An Example
function Sent() {

 print(x);
};
function Receiver(func) {

 var x;
 x = 2;

};
function Sender() {

 var x;
 x = 1;
 Receiver(Sent)

};

N.	
 Meng,	
 S.	
 Arthur	
 19	

•  In static-scoped
languages, Receiver is not
always visible to Sent, so
deep binding is natural

•  In dynamic-scoped
languages, it is natural for
Sent to have access to
variables in Receiver, so
shallow binding is
appropriate

Design Issues for Functions

•  Are side effects allowed?
– Ada requires in-mode parameters, and does

not allow any side effect
– Most languages support two-way

parameters, and thus allow functions to
cause side effects

N.	
 Meng,	
 S.	
 Arthur	
 20	

10/20/16	

11	

Design Issues for Functions

•  What types of values can be returned?
– FORTRAN, Pascal, and Modula-2: only

simple types
– C: any type except functions and arrays
– Ada: any type (but subroutines are not

types)
– JavaScript: functions can be returned
– Python, Ruby and functional languages:

methods are objects that can be treated as
any other object

N.	
 Meng,	
 S.	
 Arthur	
 21	

Overloaded Subroutine

•  A subroutine that has the same name as
another subroutine in the same
referencing environment, but its number,
order, or types of parameters must be
different
– E.g., void fun(float);

 void fun();
•  C++ and Ada have overloaded subroutines

built-in, and users can write their own
overloaded subroutines

N.	
 Meng,	
 S.	
 Arthur	
 22	

10/20/16	

12	

Generic Subroutine

•  A generic or polymorphic subroutine takes
parameters of different types on different
activations

•  An example in C++

N.	
 Meng,	
 S.	
 Arthur	
 23	

template<class Type>  
Type max(Type first, Type second) {  

return first > second ? first: second;  
}
int a, b, c;
char d, e, f;
…
c = max(a, b);
f = max(d, e);

Generic Subroutine
•  Overloaded subroutines provide a

particular kind of polymorphism called ad
hoc polymorphism
– Overloaded subroutines need not behave

similarly
•  Parametric polymorphism is provided by a

subroutine that takes generic parameters
to describe the types of parameters

•  Parametric polymorphic subroutines are
often called generic subroutines

N.	
 Meng,	
 S.	
 Arthur	
 24	

10/20/16	

13	

Coroutine

•  A special kind of subroutine. Rather
than the master-slave relationship, the
caller and callee coroutines are on a
more equal basis

•  A coroutine is a subroutine that has
multiple entry points, which are
controlled by coroutines themselves

N.	
 Meng,	
 S.	
 Arthur	
 25	

Coroutine
•  The first execution of a coroutine begins

at its beginning, but all subsequent
executions often begin at points other
than the beginning

•  Therefore, the invocation of a coroutine
is named a resume

•  Typically, coroutines repeatedly resume
each other, possibly forever

•  Their executions interleave, but do not
overlap

N.	
 Meng,	
 S.	
 Arthur	
 26	

10/20/16	

14	

An Example
sub co1() {

 …
 resume(co2);
 …
 resume(co3);

}

N.	
 Meng,	
 S.	
 Arthur	
 27	

•  The first time co1 is resumed, its
execution begins at the first
statement, and executes down to
resume(co2) (with the statement
included)

•  The next time co1 is resumed, its
execution begins at the first
statement after resume(co2)

•  The third time co1 is resumed,
its execution begins at the first
statement after resume(co3)

Coroutine

•  The interleaved execution sequence is
related to the way multiprogramming
operating systems work
– Although there may be one processor, all of

the executing programs in such a system
appear to run concurrently while sharing
the processor

– This is called quasi-concurrency
•  Coroutines provide quasi-concurrent

execution of program units
N.	
 Meng,	
 S.	
 Arthur	
 28	

10/20/16	

15	

Reference

[1] Robert W. Sebesta, Concepts of
Programming Languages, 8th edition, pg.
383-434

N.	
 Meng,	
 S.	
 Arthur	
 29	

