An Example: pass-by-value-result vs.
pass-by-reference

program foo;

var x: int;
procedure p(y: int);
begin
yizy+ 1;
yr=y*x
end pass-by-value-result | pass-by-reference
begin X y X y
X = 2; (entry to p) 2 2 2 2
p(X),' (aftery:=y +1) 2 3 3 3
prinT(x); (at p’s return) 6 6 9 9
end
Aliases can be created due to pass-
by-reference
* Given void fun(int &first, int &second),
— Actual parameter collisions
* E.g., fun(total, total) makes first and second to be

aliases
— Array element collisions

» E.g., fun(list[i], list[j]) can cause first and second

to be aliases if i ==

— Collisions between formals and globals
« E.g., int* global;
void main() { ... sub(global); ... }
void sub(int* param){ ... }

* Inside sub, param and global are aliases

N. Meng, S. Arthur

10/20/16

Pass-by-Name

« Implement an inout-mode parameter
transition method

« The body of a function is interpreted at
call time after textually substituting the
actual parameters into the function body

* The evaluation method is similar to C
preprocessor macros

An Example in Algol

procedure double(x);
real x;

begin
X:=x*2;

end;

Therefore, double(C[j]) is interpreted as
Cljl1=C[j]l* 2

10/20/16

Another Example

« Assume k is a global variable,
procedure sub2(x: int; y: int; z: int);
begin

N XX X

end;

* How is the function call sub2(k+1, j, i)
interpreted?

Disadvantages of Pass-by-Name

* Very inefficient references
* Too tricky; hard to read and understand

10/20/16

10/20/16

Implementing Parameter-Passing
Methods

* Most languages use the runtime stack to
pass parameters
— Pass-by-value
* Values are copied into stack locations
— Pass-by-result

* Values assigned to the actual parameters are placed
in the stack

— Pass-by-value-result

* A combination of pass-by-value and pass-by-result
— Pass-by-reference

* Parameter addresses are put in the stack

An Example

« Function header: void sub (int q, int b,
int ¢, int d)
—a: pass by value
— b: pass by result
— ¢: pass by value-result
—d: pass by reference

* Function call: main() calls sub(w, x,y, z)

Procedure sub

Ref. to a

Assign to b

Ref. to ¢

Program main Stack
_____ At start
= Value of a
- At end e Value of b
_________ Al start
.
At end Value of ¢
- .
--------- Address (at start)
SREEEi ™ Address (de
Code

Assign to ¢

Ref. to d

> Code

Design Considerations for Parameter
Passing

« Effici

ency

* Whether one-way or two-way data
transfer is needed

N. Meng, S. Arthur

10

10/20/16

One Software Engineering Principle

* Access by subroutine code to data outside
the subroutine should be minimized

— In-mode parameters are used whenever no
data is returned to the caller

— Out-mode parameters are used when no data is
transferred to the callee but the subroutine
must transmit data back to the caller

— Inout-mode parameters are used only when
data must move in both directions between the
caller and callee

A practical consideration in conflict
with the principle

* Pass-by-reference is the fastest way to
pass structures of significant size

10/20/16

10/20/16

Parameters that are subroutines

* In some situations, subroutine names
can be sent as parameters to other
subroutines

* Only the transmission of computation is
necessary, which could be done by
passing a functional pointer

Two complications with subroutine
parameters

* Are parameters type checked?

— Early Pascal and FORTRAN 77 do not type
check

— Later versions of Pascal, Modula-2, and
FORTRAN 90 do

— C and C++ do

Two complications with subroutine
parameters

« What referencing environment should be
used for executing the passed subroutine?
— The environment of the call statement that

enacts the passed subroutine(shallow binding)
— The environment of the definition of the
subroutine(deep binding)

— The environment of the call statement that
passed it as an actual parameter(ad hoc
binding)

An Example

function sub1() {
var x;

function sub2() { * For shallow binding, the

, e referencing environment
function sub3() { of sub?2 is sub4
var x; . .
x=3; * For deep binding, the
sub4(sub2):

; referencing environment
function sub4(subx) { of sub?2 is subl

var X;

xz4(:) * For ad hoc binding, the

SUbXx(). . .

) referencing environment
X B30 of sub2 is sub3

}

10/20/16

What is the output of alert(x)?

« Shallow binding?
* Deep binding?

« Ad hoc binding?

Referencing Environment for
Subroutine Parameters

* Deep binding and ad hoc binding can be
the same when a subroutine is declared
and passed by the same subroutine

* In reality, ad hoc binding has never been
used

* Static-scoped languages usually use deep
binding

 Dynamic-scoped languages usually use
shallow binding

10/20/16

An Example
function Sent() { * In static-scoped
, print(x); languages, Receiver is not
flunc‘rion Receiver(func) { G'WClYS 'VIS!ble. to SenT' SO
var x; deep binding is natural
, e - In dynamic-scoped
function Sender(){ languages, it is natural for
var ;"' Sent to have access to
X =1 . . .
variables in Receiver, so

Receiver(Sent)

) shallow binding is
appropriate

Design Issues for Functions

* Are side effects allowed?

— Ada requires in-mode parameters, and does
not allow any side effect

— Most languages support two-way
parameters, and thus allow functions to
cause side effects

10/20/16

10

Design Issues for Functions

« What types of values can be returned?
— FORTRAN, Pascal, and Modula-2: only
simple types
— C: any type except functions and arrays
— Ada: any type (but subroutines are not
types)
— JavaScript: functions can be returned

—Python, Ruby and functional languages:
methods are objects that can be treated as
any other object

Overloaded Subroutine

« A subroutine that has the same name as
another subroutine in the same
referencing environment, but its number,
order, or types of parameters must be
different
— E.g., void fun(float);

void fun();

« C++ and Ada have overloaded subroutines
built-in, and users can write their own
overloaded subroutines

10/20/16

11

Generic Subroutine

* A generic or polymorphic subroutine takes
parameters of different types on different
activations

* An example in C++

template<class Type>

Type max(Type first, Type second) {
return first > second ? first: second;

}

int a, b, c;

char d, e, £f;

c
f

max(a, b);
max(d, e);

Generic Subroutine

* Overloaded subroutines provide a
particular kind of polymorphism called ad
hoc polymorphism
— Overloaded subroutines need not behave

similarly

* Parametric polymorphism is provided by a
subroutine that takes generic parameters
to describe the types of parameters

* Parametric polymorphic subroutines are
often called generic subroutines

10/20/16

12

Coroutine

* A special kind of subroutine. Rather
than the master-slave relationship, the
caller and callee coroutines are on a
more equal basis

A coroutine is a subroutine that has
multiple entry points, which are
controlled by coroutines themselves

Coroutine

The first execution of a coroutine begins
at its beginning, but all subsequent
executions often begin at points other
than the beginning

Therefore, the invocation of a coroutine
is nhamed a resume

Typically, coroutines repeatedly resume
each other, possibly forever

Their executions interleave, but do not
overlap

10/20/16

13

An Example

The first time col is resumed, its
execution begins at the first
statement, and executes down to
resume(co2) (with the statement
included)

The next time col is resumed, its
execution begins at the first
statement after resume(co2)

The third time col is resumed,
its execution begins at the first
statement after resume(co3)

sub col() {

resume(co2);

resume(co3);

Coroutine

« The interleaved execution sequence is
related to the way multiprogramming

operating systems work

— Although there may be one processor, all of
the executing programs in such a system

appear to run concurrently while
the processor

— This is called quasi-concurrency

sharing

« Coroutines provide quasi-concurrent

execution of program units

10/20/16

14

10/20/16

Reference

[1] Robert W. Sebesta, Concepts of
Programming Languages, 8™ edition, pg.
383-434

15

