
10/6/16	

1	

N.	
 Meng,	
 S.	
 Arthur	

Decoration of parse
tree for (1 + 3) * 2

1	

Program Assignment 2
Due date: 10/20 12:30pm

•  Bitwise Manipulation of Hexidecimal
Numbers

•  CFG

N.	
 Meng,	
 S.	
 Arthur	
 2	

E → E “|” A bitwise OR
E → A
A → A “^” B bitwise XOR
A → B
B → B “&” C bitwise AND
B → C
C → “<” C bitwise shift left 1
C → “>” C bitwise shift right 1
C → “~” C bitwise NOT
C → “(” E “)”
C → hex

10/6/16	

2	

LL(1) Attribute
Grammar

3	

E → A EE
EE.st = A.val E.val = EE.val

EE1 → | A EE2
EE2.st = EE1.st | A.val (“|” bitwise OR)
EE1.val = EE2.val

EE → ε
EE.val = EE.st

A → B AA
AA.st = B.val A.val = AA.val

AA1 → ^ B AA2
AA2.st = AA1.st ^ B.val (“^” bitwise XOR)
AA1.val = AA2.val

AA → ε
AA.val = AA.st

B → C BB
BB.st = C.val B.val = BB.val

BB1 → & C BB2
BB2.st = BB1.st & C.val (“&” bitwise AND)
BB1.val = BB2.val

BB → ε
BB.val = BB.st

C1 → <C2
C1.val = C2.val << 1 (“<<” bitwise shift left one)

C1 → >C2
C1.val = C2.val >> 1 (“>>” bitwise shift right one)

C1 → ~C2
C1.val = ~C2.val (“~” bitwise NOT)

C → (E)
C.val = E.val

C → hex
C.val = hex.val

Program Requirement

•  Write a C program using recursive descent
parser w/ lexical analyzer to implement
the designated inherited and synthesized
attributes. The program evaluates the
expressions in a file input.txt, and outputs
the results to console

•  E.g., input: f&a
 output: f&a = a

N.	
 Meng,	
 S.	
 Arthur	
 4	

10/6/16	

3	

Program Requirements

•  You cannot use more than 2 global/non-
local variables, and they should be to
hold the Operator and HexNumber as
detected by the lexical analyzer

N.	
 Meng,	
 S.	
 Arthur	
 5	

Hints

•  To solve the problems, you should take
the following steps:
– Write a lexical analyzer
– Write a recursive-descent parser
– Attributes are processed as either pass-in

parameters or return value of functions

N.	
 Meng,	
 S.	
 Arthur	
 6	

10/6/16	

4	

Hints

•  Write a lexical analyzer
– You may need to define an enum type for all

possible tokens your scanner can generate
– E.g., when reading hexadecimial numbers

0-9 or a-f, the recognized token is HEX,
and the value is saved in HexNumber

N.	
 Meng,	
 S.	
 Arthur	
 7	

Hints

•  Write a recursive-descent parser
– Parse the program by defining and invoking

functions
– E.g., E → A EE
 EE.st = A.val E.val = EE.val

 int E() {
 int val = A();

 return EE(val);
 }

N.	
 Meng,	
 S.	
 Arthur	
 8	

10/6/16	

5	

Hints

•  There are parameters passed in or returned
when invoking functions. When invoking a
function, the synthesized attribute is the
return value, while the inherited attribute is
the passing-in parameter

N.	
 Meng,	
 S.	
 Arthur	
 9	

Hints

•  Sample code of main()

N.	
 Meng,	
 S.	
 Arthur	
 10	

int main() {
 int val;
 symbol = getNextToken();
 while (symbol != EOF_) {
 if (symbol != NEW_LINE) {
 val = E();
 printf(" = %x\n", val & 0xf);
 }
 if (symbol == EOF_) break;
 symbol = getNextToken();
 }
 return 1;

}

10/6/16	

6	

Submission Requirements

•  Pack the following files into a .tar file:
– Source file: parser.c
– Executable file: parser
– Input file: input.txt
– Output file: output.txt (copy all your

console outputs to this file)
– README file (optional, used if you have any

additional comments/explanations about
the files)

N.	
 Meng,	
 S.	
 Arthur	
 11	

DYNAMIC SEMANTICS

N.	
 Meng,	
 S.	
 Arthur	
 12	

10/6/16	

7	

Dynamic Semantics

•  Describe the meaning of expressions,
statements, and program units

•  No single widely acceptable notation or
formalism for describing semantics

•  Two common approaches:
– Operational
– Denotational

N.	
 Meng,	
 S.	
 Arthur	
 13	

Operational Semantics

•  Gives a program's meaning in terms of
its implementation on a real or virtual
machine

•  Change in the state of the machine
(memory, registers, etc.) defines the
meaning of the statement

N.	
 Meng,	
 S.	
 Arthur	
 14	

10/6/16	

8	

Operational Semantics
•  There are different levels of operational

semantics
– Big-Step Semantics: At the highest level,
natural operational semantics are used to
describe the final execution result of a complete
program

– Small-Step Semantics: At the lowest level,
structural operational semantics are used to
determine the precise meaning of a single
statement
•  How does the statement change the state of a real/

virtual machine, such as memory and registers ?
N.	
 Meng,	
 S.	
 Arthur	
 15	

Operational Semantics Definition Process

1.  Design an appropriate intermediate
language. Each construct of the
intermediate language must have an
obvious and unambiguous meaning

2.  Construct a virtual machine (an
interpreter) for the intermediate
language. The virtual machine can be used
to execute either single statements, code
segments, or whole programs

N.	
 Meng,	
 S.	
 Arthur	
 16	

10/6/16	

9	

An Example

•  The virtual computer is supposed to be
able to correctly “execute” the
instructions and recognize the effects
of the “execution”

C Operational Semantics

for (expr1; expr2; expr3)
{
 . . .
}

 expr1;
loop: if expr2 == 0 goto out
 . . .
 expr3;
 goto loop
out: . . .

N.	
 Meng,	
 S.	
 Arthur	
 17	

A Simple Language of Arithmetic
Expressions [2]

•  CFG
 e ::= n
 | e1 + e2
 | e1 * e2

•  We are curious about:
– What is the “meaning” of a given ARITH

expression?
– How do we evaluate expression?

N.	
 Meng,	
 S.	
 Arthur	
 18	

10/6/16	

10	

Operational Semantics of Arithmetic
Expressions [2]

•  Specify how expressions should be
evaluated

•  Defined by cases on the form of
expressions
–  n evaluates to n

•  n is a normal form, an expression that cannot be
reduced further

–  e1 + e2 evaluates to n if
•  e1 evaluates to n1,
•  e2 evaluates to n2, and
•  n is the sum of n1 and n2

N.	
 Meng,	
 S.	
 Arthur	
 19	

Operational Semantics of Arithmetic
Expressions [2]

–  e1 * e2 evaluates to n if
•  e1 evaluates to n1,
•  e2 evaluates to n2, and
•  n is the product of n1 and n2

N.	
 Meng,	
 S.	
 Arthur	
 20	

10/6/16	

11	

Big-Step Operational Semantics [2]

N.	
 Meng,	
 S.	
 Arthur	

n ⇓ n

e1 + e2 ⇓ n
e1 ⇓ n1 e2 ⇓ n2 n is the sum of n1 and n2

e1 * e2 ⇓ n
e1 ⇓ n1 e2 ⇓ n2 n is the product of n1 and n2

21	

Small-Step Operational Semantics [3]

•  Describe a single step in the evaluation
•  Show intermediate results and how to

calculate each result
•  Many steps may be needed to get a

result

N.	
 Meng,	
 S.	
 Arthur	
 22	

10/6/16	

12	

Small-Step Operational Semantics [3]

N.	
 Meng,	
 S.	
 Arthur	

n1 + n2 -> n

n is the sum of n1 and n2

n1 * n2 -> n

n is the product of n1 and n2

e1 + e2 -> e1’ + e2

e1 -> e1’
n1 + e2 -> n1 + e2’

e2 -> e2’

e1 * e2 -> e1’ * e2

e1 -> e1’
n1 * e2 -> n1 * e2’

e2 -> e2’

•  The semantic rules tell not only the operator
meanings, but also evaluation orders

•  E.g., (1+2) + (3+4) = 3 + (3+4) 23	

Key Points of Operational Semantics

•  Advantages
– May be simple and intuitive for small

examples
– Good if used informally
– Useful for implementation

•  Disadvantages
– Very complex for large programs
– Lacks mathematical rigor

N.	
 Meng,	
 S.	
 Arthur	
 24	

10/6/16	

13	

Typical Usage of Operational
Semantics

•  Vienna Definition Language (VDL) used to
define PL/I (Wegner 1972)

•  Unfortunately, VDL is so complex that it
serves no practical purpose

N.	
 Meng,	
 S.	
 Arthur	
 25	

Denotational Semantics

•  The most rigorous, widely known method
for describing the meaning of programs

•  Solely based on recursive function
theory

•  Originally developed by Scott and
Strachey (1970)

N.	
 Meng,	
 S.	
 Arthur	
 26	

10/6/16	

14	

Denotational Semantics

•  Key Idea
– Define for each language entity both a

mathematical object, and a function that
maps instances of that entity onto
instances of the mathematical object

•  The basic idea
– There are rigorous ways of manipulating

mathematical objects but not programming
language constructs

N.	
 Meng,	
 S.	
 Arthur	
 27	

Denotational Semantics

•  Difficulty
– How to create the objects and the mapping

functions?
•  The method is named denotational,

because the mathematical objects
denote the meaning of their
corresponding syntactic entities

N.	
 Meng,	
 S.	
 Arthur	
 28	

10/6/16	

15	

Denotational vs. Operational

•  Both denotational semantics and
operational semantics are defined in terms
of state changes in a virtual machine

•  In operational semantics, the state changes
are defined by coded algorithms in the
machine

•  In denotational semantics, the state change
is defined by rigorous mathematical
functions

N.	
 Meng,	
 S.	
 Arthur	
 29	

Program State
•  Let the state s of a program be a set of

pairs as follows:
 {<i1, v1>, <i2, v2>, …, <in, vn>}
– Each i is the name of a variable
– The associated v is the current value of the

variable
– Any v can have the special value undef,

indicating that the associated variable is
undefined

•  Let VARMAP be a function as follows:
 VARMAP(ij, s) = vj

N.	
 Meng,	
 S.	
 Arthur	
 30	

10/6/16	

16	

Program State

•  Most semantics mapping functions for
programs and program constructs map
from states to states

•  These state changes are used to define
the meanings of programs and program
constructs

•  Some language constructs, such as
expressions, are mapped to values, not
state changes

N.	
 Meng,	
 S.	
 Arthur	
 31	

An Example

•  CFG for binary numbers
 <bin_num> -> ‘0’
 <bin_num> -> ‘1’
 <bin_num> -> <bin_num> ‘0’
 <bin_num> -> <bin_num> ‘1’

•  Parse tree of the binary number 110
<bin_num>

<bin_num>

<bin_num>

‘1’

‘1’

‘0’

N.	
 Meng,	
 S.	
 Arthur	
 32	

10/6/16	

17	

Example Semantic Rule Design
•  Mathematical objects
– Decimal number equivalence for each binary

number
•  Functions
– Map binary numbers to decimal numbers
– Rules with terminals as RHS are translated as

direct mappings from terminals to
mathematical objects

– Rules with nonterminals as RHS are translated
as manipulations on mathematical objects

N.	
 Meng,	
 S.	
 Arthur	
 33	

Example Semantic Rules

Syntax Rules Semantic Rules

<bin_num>->‘0’
<bin_num>->‘1’
<bin_num>-><bin_num> ‘0’
<bin_num>-><bin_num> ‘1’

Mbin(‘0’)=0
Mbin(‘1’)=1
Mbin(<bin_num> ‘0’)=  
 2*Mbin(<bin_num>)
Mbin(<bin_num> ‘1’)=  
 2*Mbin(<bin_num>)+1

N.	
 Meng,	
 S.	
 Arthur	
 34	

10/6/16	

18	

Expressions

•  CFG for expressions
 <expr> -> <dec_num> | <var> | <binary_expr>

 <binary_expr> -> <l_expr> <op> <r_expr>
 <l_expr> -> <dec_num> | <var>
 <r_expr> -> <dec_num> | <var>
 <op> -> + | *

N.	
 Meng,	
 S.	
 Arthur	
 35	

Expressions
Me(<expr>, s) Δ=
 case <expr> of
 <dec_num> ⇒ Mdec(<dec_num>)
 <var> ⇒ VARMAP(<var>, s)
 <binary_expr> ⇒
 if (<binary_expr>.<op> = ‘+’) then
 Me(<binary_expr>.<l_expr>, s) +
 Me(<binary_expr>.<r_expr>, s)
 else
 Me(<binary_expr>.<l_expr>, s) ×
 Me(<binary_expr>.<r_expr>, s) N.	
 Meng,	
 S.	
 Arthur	
 36	

