Decoration of parse (8],
tree for (1+3)* 2 T \TT
/ :
F [4] Fr[a]3] 3
(E[a]« > * Fl2] rrls]s]
S
/T / T‘T const ¢
F rr[i1] + T [3]. TT[4]4]

Program Assignment 2
Due date: 10/20 12:30pm

» Bitwise Manipulation of Hexidecimal
Numbers

° CFG E “|” A bitwise OR
A
A " B bitwise XOR
B
B “&” C bitwise AND
C

W C bitwise shift left 1
w>" C bitwise shift right 1
W C bitwise NOT
\\(II E

N. Meng, S. Arthur 2

hex

oWy P EE

R T A

10/6/16

LL(1) Attribute
Grammar

E - A EE

EE.st = A.val E.val = EE.val

EE, - | A EE,

EE,.st = EE,.st | A.val (“” bitwis
EE,.val = EE,.val

EE - &

EE.val = EE.st

A B2

AA.st = B.val A.val = AA.val

AA, . ~ B BA,

AR,.st = AA,.st ~ B.val (“.” bitwise
AR, .val = AA,.val

A e

AA.val = RA.st

B - C BB
BB.st = C.val B.val = BB.val
BB, - & C BB,

BB,.st = BB,.st & C.val
BB,.val = BB,.val

BB - €
BB.val = BB.st

C, - <C,
C,.val = C,.val << 1

c, - >C,
C,.val = C,.val >> 1

(“&” bitwise

(“<<” bitwise

(“">>” bitwise

C, — ~C,
C,.val = ~C,.val (“~” bitwise
c.(E)

C.val = E.val

C - he

C.val = hex.val

e OR)

XOR)

AND)

shift left one)

shift right one

NOT)

)

Program Requirement

» Write a C program using recursive descent

parser w/ lexical analyzer to implement
the designated inherited and synthesized
attributes. The program evaluates the
expressions in a file input.txt, and outputs
the results o console

« E.g., input: f&a

output: fda=a

10/6/16

Program Requirements

* You cannot use more than 2 global/non-
local variables, and they should be to
hold the Operator and HexNumber as
detected by the lexical analyzer

Hints

* To solve the problems, you should take
the following steps:
— Write a lexical analyzer
— Write a recursive-descent parser

— Attributes are processed as either pass-in
parameters or return value of functions

10/6/16

Hints

« Write a lexical analyzer

— You may need to define an enum type for all
possible tokens your scanner can generate

— E.g., when reading hexadecimial numbers
0-9 or a-f, the recognized token is HEX,
and the value is saved in HexNumber

Hints

« Write a recursive-descent parser

— Parse the program by defining and invoking
functions

-Eg.,E - A EE
EE.st = A.val E.val = EE.val

int E() {
int val = A();
return EE (val) ;

10/6/16

Hints

« There are parameters passed in or returned
when invoking functions. When invoking a
function, the synthesized attribute is the
return value, while the inherited attribute is
the passing-in parameter

Hints
« Sample code of main()
int main() {
int val;

symbol = getNextToken();
while (symbol I= EOF_) {
if (symbol 1= NEW_LINE) {
val = E();
printf(" = %x\n", val & 0xf);
}
if (symbol == EOF_) break;
symbol = getNext Token();

return 1;

10/6/16

10/6/16

Submission Requirements

* Pack the following files into a .tar file:
— Source file: parser.c
— Executable file: parser
— Input file: input.txt
— Output file: output.txt (copy all your
console outputs to this file)
— README file (optional, used if you have any

additional comments/explanations about
the files)

DYNAMIC SEMANTICS

10/6/16

Dynamic Semantics

« Describe the meaning of expressions,
statements, and program units

* No single widely acceptable notation or
formalism for describing semantics

« Two common approaches:
— Operational
— Denotational

Operational Semantics

« Gives a program's meaning in terms of
its implementation on a real or virtual
machine

* Change in the state of the machine
(memory, registers, etc.) defines the
meaning of the statement

Operational Semantics

« There are different levels of operational
semantics

— Big-Step Semantics: At the highest level,
natural operational semantics are used to
describe the final execution result of a complete
program

— Small-Step Semantics: At the lowest level,
structural operational semantics are used fo
determine the precise meaning of a single
statement

* How does the statement change the state of a real/
virtual machine, such as memory and registers ?

N. Meng, S. Arthur 15

Operational Semantics Definition Process

1. Design an appropriate intermediate
language. Each construct of the
intermediate language must have an
obvious and unambiguous meaning

2. Construct a virtual machine (an
interpreter) for the intermediate
language. The virtual machine can be used
to execute either single statements, code
segments, or whole programs

N. Meng, S. Arthur 16

10/6/16

An Example

C Operational Semantics

for (exprl; expr2; expr3) exprl;

{

}

loop: if expr2 == 0 goto out
expr3;
goto loop

out:

* The virtual computer is supposed to be
able to correctly "execute” the
instructions and recognize the effects
of the “execution”

N. Meng, S. Arthur 17

A Simple Language of Arithmetic
Expressions [2]

- CFG
e.=n
| el + e2
| el * e2

« We are curious about:

— What is the "meaning” of a given ARITH
expression?

— How do we evaluate expression?

N. Meng, S. Arthur 18

10/6/16

Operational Semantics of Arithmetic
Expressions [2]

« Specify how expressions should be
evaluated

* Defined by cases on the form of
expressions

— n evaluates to n

* nis a normal form, an expression that cannot be
reduced further

— e, + e, evaluates to n if
* e, evaluates to ny,
* e, evaluates to n,, and
* nis the sum of n; and n,

Operational Semantics of Arithmetic
Expressions [2]

— e, * e, evaluates to n if
* e, evaluates to n,,
* e, evaluates to n,, and
* nis the product of n; and n;

10/6/16

10

Big-Step Operational Semantics [2]

nin

e;4n; e,Un, nisthesumof n,andn,
e;+e,dn

e; U n; e,Un, nistheproduct of n; and n,

e;*e,Un

Small-Step Operational Semantics [3]

« Describe a single step in the evaluation

« Show intermediate results and how to
calculate each result

* Many steps may be needed to get a
result

10/6/16

11

Small-Step Operational Semantics [3]

nis the sum of nyand n, nis the product of n; and n,

ng+n,->n ng*n,->n
e > e e;->e;

ejte,->e +e, n+e,->n +e,
e;->e; e,->e,

e;*e,>e/ *e, n*e,->n*e,

 The semantic rules tell not only the operator
meanings, but also evaluation orders

. Eg, (1+2) + (3+4) =3+ (3+4)

Key Points of Operational Semantics

« Advantages

— May be simple and intuitive for small
examples

— Good if used informally
— Useful for implementation
+ Disadvantages
— Very complex for large programs
— Lacks mathematical rigor

10/6/16

12

Typical Usage of Operational
Semantics
Vienna Definition Language (VDL) used to
define PL/I (Wegner 1972)

Unfortunately, VDL is so complex that it
serves no practical purpose

Denotational Semantics

The most rigorous, widely known method
for describing the meaning of programs

Solely based on recursive function
theory

Originally developed by Scott and
Strachey (1970)

10/6/16

13

Denotational Semantics

* Key Idea
— Define for each language entity both a
mathematical object, and a function that
maps instances of that entity onto
instances of the mathematical object

« The basic idea

— There are rigorous ways of manipulating
mathematical objects but not programming
language constructs

Denotational Semantics

« Difficulty
— How to create the objects and the mapping

functions?

* The method is named denotational,
because the mathematical objects
denote the meaning of their
corresponding syntactic enftities

10/6/16

14

10/6/16

Denotational vs. Operational

 Both denotational semantics and
operational semantics are defined in tferms
of state changes in a virtual machine

 In operational semantics, the state changes
are defined by coded algorithms in the
machine

 In denotational semantics, the state change
is defined by rigorous mathematical
functions

Program State
Let the state s of a program be a set of
pairs as follows:
{<iy, v, <in, Vo2, .., <y, Vi)
— Each i is the name of a variable

— The associated v is the current value of the
variable

— Any v can have the special value undef,
indicating that the associated variable is
undefined

Let VARMAP be a function as follows:
VARMAP(i, 5) =,

15

Program State

+ Most semantics mapping functions for
programs and program constructs map
from states to states

 These state changes are used to define
the meanings of programs and program
constructs

« Some language constructs, such as

expressions, are mapped to values, not
state changes

An Example

« CFG for binary numbers
<bin_num> -> 'O’
<bin_num> ->'1'
<bin_num> -> <bin_num> 'O’
<bin_num> -> <bin_num> 'l’
* Parse tree of the binary number 110

<bin_num>

=
<bin_ num> ‘0’
=

<bin num> ‘17

Ve
111

10/6/16

16

Example Semantic Rule Design

* Mathematical objects
— Decimal number equivalence for each binary
number
* Functions
— Map binary numbers to decimal numbers

— Rules with terminals as RHS are translated as
direct mappings from terminals to
mathematical objects

— Rules with nonterminals as RHS are translated
as manipulations on mathematical objects

N. Meng, S. Arthur 33

Example Semantic Rules

Syntax Rules Semantic Rules
<bin num>->‘0’ M, (*07)=0
<bin_num>->‘1" M, ('17)=1
<bin num>-><bin num> ‘0’ |M,; (<bin_num> ‘0')=
<bin num>-><bin num> ‘1°’ 2*M, . (<bin_num>)

My;, (<bin_num> ‘1’)=
2*M,; (<bin_ num>)+1

N. Meng, S. Arthur 34

10/6/16

17

Expressions

« CFG for expressions
<expr> -><dec_num> | <var> | <binary_expr>
<binary_expr> -> <|_expr> <op> <r_expr>
<I_expr> -> <dec_num> | <var>
<r_expr> -> <dec_num> | <var>

<op> -> + | *

Expressions
M, (<expr>, s) A=
case <expr> of
<dec_num> = M, (<dec_num>)
<var> = VARMAP(<var>, s)
<binary_expr> =
if (<binary_expr>.<op> = '+') then
M. (<binary_expr><|_expr>, s) +
M. (<binary_expr>.<r_exprs, s)
else
M. (<binary_expr>.<|_expr>, s) x
M.(<binary_expr>.<r_expr>, s)

10/6/16

18

