
9/29/16	

1	

Short-Circuit Evaluation

•  A short-circuit evaluation of an expression
is one in which the result is determined
without evaluating all of the operands and/or
operators
– Consider (a < b) && (b < c):
•  If a >= b, there is no point evaluating b < c

because (a < b) && (b < c) is automatically false

•  (x && y) ≡ if x then y else false
•  (x || y) ≡ if x then true else y

N.	 Meng,	 S.	 Arthur	 1	

Short-Circuit Evaluation

•  Short-circuit evaluation may lead to
unexpected side effects and cause error
– E.g., (a > b) || ((b++) / 3)

•  C, C++, and Java:
– Use short-circuit evaluation for Boolean

operations (&& and ||)
– Also provide bitwise operators that are not
short circuit (& and |)

N.	 Meng,	 S.	 Arthur	 2	

9/29/16	

2	

Short-Circuit Evaluation

•  Ada: programmers can specify either

 Non-SC eval SC eval
 (x or y) (x or else y)
 (x and y) (x and then y)

N.	 Meng,	 S.	 Arthur	 3	

Control Structures

•  Selection
•  Iteration
– Iterators

•  Recursion
•  Concurrency & non-determinism
– Guarded commands

N.	 Meng,	 S.	 Arthur	 4	

9/29/16	

3	

Iteration Based on Data Structures

•  A data-based iteration statement uses a
user-defined data structure and a user-
defined function to go through the
structure’s elements
– The function is called an iterator
– The iterator is invoked at the beginning of

each iteration
– Each time it is invoked, an element from

the data structure is returned
– Elements are returned in a particular order

N.	 Meng,	 S.	 Arthur	 5	

A Java
Implementation
for Iterator

6	

9/29/16	

4	

Guarded Commands

•  New and quite different forms of
selection and loop structures were
suggested by Dijkstra (1975)

•  We cover guarded commands because
they are the basis for two linguistic
mechanisms developed later for
concurrent programming in two
languages: CSP and Ada

N.	 Meng,	 S.	 Arthur	 7	

Motivations of Guarded Commands

•  To support a program design
methodology that ensures correctness
during development rather than relying
on verification or testing of completed
programs afterwards

•  Also useful for concurrency
•  Increased clarity in reasoning

N.	 Meng,	 S.	 Arthur	 8	

9/29/16	

5	

Guarded Commands

•  Two guarded forms
– Selection (guarded if)
– Iteration (guarded do)

N.	 Meng,	 S.	 Arthur	 9	

Guarded Selection

•  Sementics
– When this construct is reached
•  Evaluate all boolean expressions
•  If more than one is true, choose one

nondeterministically
•  If none is true, it is a runtime error

•  Idea: Forces one to consider all possibilities
N.	 Meng,	 S.	 Arthur	 10	

if <boolean> -> <statement>
[] <boolean> -> <statement>
 ...
[] <boolean> -> <statement>
fi

9/29/16	

6	

An Example

•  If i = 0 and j > i, the construct chooses
nondeterministically between the first
and the third assignment statements

•  If i == j and i ≠ 0, none of the conditions
is true and a runtime error occurs

N.	 Meng,	 S.	 Arthur	 11	

if i = 0 -> sum := sum + i
[] i > j -> sum := sum + j
[] j > i -> sum := sum + i
fi

Guarded Selection

•  The construction can be an elegant way
to state that the order of execution, in
some cases, is irrelevant

– E.g., if x == y, it does not matter which we
assign to max

– This is a form of abstraction provided by
the nondeterministic semantics

N.	 Meng,	 S.	 Arthur	 12	

if x >= y -> max := x
[] y >= x -> max := y
fi

9/29/16	

7	

Guarded Iteration

•  Semantics:
– For each iteration
•  Evaluate all boolean expressions
•  If more than one is true, choose one

nondeterministically, and then start loop again
•  If none is true, exit the loop

•  Idea: if the order of evaluation is not
important, the program should not specify one

N.	 Meng,	 S.	 Arthur	 13	

do <boolean> -> <statement>

[] <boolean> -> <statement>

 ...
[] <boolean> -> <statement>

od

An Example

•  Given four integer variables: q1, q2, q3,
and q4, rearrange the values so that
q1 ≤ q2 ≤ q3 ≤ q4

•  Without guarded iteration, one solution
is to put the values into an array, sort
the array, and then assigns the value
back to the four variables

N.	 Meng,	 S.	 Arthur	 14	

do q1 > q2 -> temp := q1; q1 := q2; q2 := temp;

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp;

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp;
od

9/29/16	

8	

An Example

•  While the solution with guarded
iteration is not difficult, it requires a
good deal of code

•  There is considerably increased
complexity in the implementation of the
guarded commands over their
conventional deterministic counterparts

N.	 Meng,	 S.	 Arthur	 15	

Reference

[1] Robert W. Sebesta, Concepts of
Programming Languages, 8th edition, pg.
311-338

N.	 Meng,	 S.	 Arthur	 16	

9/29/16	

9	

Semantic Analysis

In Text: Chapter 4

Outline [1]

•  Static semantics
– Attribute grammars

•  Dynamic semantics
– Operational semantics
– Denotational semantics

N.	 Meng,	 S.	 Arthur	 18	

9/29/16	

10	

Syntax vs. Semantics

•  Syntax concerns the form of a valid
program

•  Semantics concerns its meaning
•  Meaning of a program is important
– It allows us to enforce rules, such as type

consistency, which go beyond the form
– It provides the information needed to

generate an equivalent output program

N.	 Meng,	 S.	 Arthur	 19	

Two types of semantic rules

•  Static semantics
•  Dynamic semantics

N.	 Meng,	 S.	 Arthur	 20	

9/29/16	

11	

Static Semantics

•  There are some characteristics of the
structure of programming languages
that are difficult or impossible to
describe with BNF
– E.g., type compatibility: a floating-point

value cannot be assigned to an integer type
variable, but the opposite is legal

N.	 Meng,	 S.	 Arthur	 21	

Static Semantics

•  The static semantics of a language is
only indirectly related to the meaning of
programs during execution; rather, it
has to do with the legal forms of
programs
– Syntax rather than semantics

•  Many static semantic rules of a language
state its type constraints

N.	 Meng,	 S.	 Arthur	 22	

9/29/16	

12	

Dynamic semantics

•  It describes the meaning of
expressions, statements, and program
units

•  Programmers need dynamic semantics to
know precisely what statements of a
language do

•  Compiler writers need define the
semantics of the languages for which
they are writing compilers

N.	 Meng,	 S.	 Arthur	 23	

Role of Semantic Analysis

•  Following parsing, the next two phases of
the "typical" compiler are
– semantic analysis
– (intermediate) code generation

N.	 Meng,	 S.	 Arthur	 24	

9/29/16	

13	

Role of Semantic Analysis

•  The principal job of the semantic
analyzer is to enforce static semantics
– Constructs a syntax tree (usually first)
– Performs analysis of information that is

gathered
– Uses that information later during code

generation

N.	 Meng,	 S.	 Arthur	 25	

Conventional Semantic Analysis

•  Compile-time analysis and run-time
“actions” that enforce language-defined
semantics
– Static semantic rules are enforced at

compile time by the compiler
•  Type checking

– Dynamic semantic rules are enforced at
runtime by the compiler-generated code
•  Bounds checking

N.	 Meng,	 S.	 Arthur	 26	

9/29/16	

14	

STATIC SEMANTICS

N.	 Meng,	 S.	 Arthur	 27	

Attribute Grammar

•  A device used to describe more of the
structure of a programming language
than can be described with a context-
free grammar

•  It provides a formal framework for
decorating parse trees

•  An attribute grammar is an extension
to a context-free grammar

N.	 Meng,	 S.	 Arthur	 28	

9/29/16	

15	

Attribute Grammar
•  The extension includes
– Attributes
– Attribute computation functions
– Predicate functions

N.	 Meng,	 S.	 Arthur	 29	

•  Context-Free Grammar (CFG)

•  Note:
–  It only focuses on potential structured

sequence of tokens
–  It says nothing about the meaning of any

particular program

A Running Example

<assign> -> <var> = <expr>
<expr> -> <var> + <var>
<expr> -> <var>
<var> -> A | B | C

N.	 Meng,	 S.	 Arthur	 30	

9/29/16	

16	

Attributes
•  Associated with each grammar symbol X

is a set of attributes A(X). The set
A(X) consists of two disjoint sets: S(X)
and I(X)

N.	 Meng,	 S.	 Arthur	 31	

Attributes

•  S(X): synthesized attributes, which are
used to pass semantic information up a
parse tree

N.	 Meng,	 S.	 Arthur	 32	

9/29/16	

17	

Attributes

•  I(X): inherited attributes, which pass
semantic information down or across a
tree. Similar to variables because they
can also have values assigned to them

N.	 Meng,	 S.	 Arthur	 33	

Intrinsic Attributes

•  Synthesized attributes of leaf nodes
whose values are determined outside
the parse tree
– E.g., the type of a variable can come from

the symbol table
– Given the intrinsic attribute values on a

parse tree, the semantic functions can be
used to compute the remaining attribute
values

N.	 Meng,	 S.	 Arthur	 34	

9/29/16	

18	

Example Synthesized Attribute

•  actual_type
– A synthesized attribute associated with

nonterminals: <var> and <expr>
– It is used to store the actual type, int or

real, of a variable or expression
– For each variable, the actual_type is

intrinsic
– For expressions and assignments, the

attribute is determined by the actual types
of children nodes

N.	 Meng,	 S.	 Arthur	 35	

Evaluation Order of Synthesized
Attribute actual_type

N.	 Meng,	 S.	 Arthur	

<assign>	

<var>	 <expr>	

A	 =	

<var>[2]	 <var>[3]	

A	 +	 B	

actual_type	

actual_type	 actual_type	

actual_type	

•  Parser tree of
A = A + B

•  A and B have
type “real” or
“int” according
to the symbol
table

36	

9/29/16	

19	

Example Inherited Attribute

•  expected_type
– An inherited attribute associated with the

nonterminal <expr>
– It is used to store the expected type,

either int or real
– It is determined by the type of the

variable on the left side of the assignment
statement

N.	 Meng,	 S.	 Arthur	 37	

Evaluation Order of Inherited
Attribute expected_type

•  The
expected_type
of <expr> is
decided by the
actual_type of
the assignment’s
left side

N.	 Meng,	 S.	 Arthur	

<assign>	

<var>	 <expr>	

A	 =	

<var>[1]	 <var>[2]	

A	 +	 B	

actual_type	

expected_type	

actual_type	 actual_type	

actual_type	

38	

9/29/16	

20	

Attribute Grammar

•  Defines the attributes, and attribute
evaluation rules mentioned in the
example

N.	 Meng,	 S.	 Arthur	 39	

Example Attribute Grammar

N.	 Meng,	 S.	 Arthur	

Syntax Rule Semantic Rule
<assign> -> <var> = <expr> R1. <expr>.expected_type <- <var>.actual_type
<expr> -> <var>[1] + var[2] R2. <expr>.actual_type <- if (<var>[2].actual_type = int) and

 (<var>[3].actual_type = int)
 then int
 else real
 end if
 predicate: <expr>.actual_type == <expr>.expected_type

<expr> -> <var> R3. <expr>.actual_type <- <var>.actual_type
 predicate: <expr>.actual_type == <expr>.expected_type

<var> -> A | B | C R4. <var>.actual_type <- look-up(<var>.string)
The look-up function looks up a given variable name in the
symbol table and returns the variable’s type

40	

9/29/16	

21	

Semantic Functions

•  Associated with each grammar rule is a
set of semantic functions and a possibly
empty set of predicate functions over
the attributes of the symbols in the
grammar rule

•  Specify how attribute values are
computed for S(X) and I(X)

N.	 Meng,	 S.	 Arthur	 41	

Semantic Functions

•  For a rule X0->X1…Xn, the synthesized
attributes of X0 are computed with
semantic functions of the form S(X0) =
f(A(X1), …, A(Xn))

•  The value of a synthesized attribute on
a parse tree node depends only on the
attribute values of the children node

N.	 Meng,	 S.	 Arthur	 42	

9/29/16	

22	

Semantic Functions
•  Inherited attributes of symbols Xj, 1≤j≤n,

are computed with a semantic function of
the form I(Xj) = f(A(X0), …, A(Xn))

•  The value of an inherited attribute on a
parse tree node depends on the attribute
values of the node’s parent and siblings

•  To avoid circularity, inherited attributes
are often restricted to functions of the
form I(Xj) = f(A(X0), …, A(Xj-1))

N.	 Meng,	 S.	 Arthur	 43	

Revisit the Semantic Functions

Syntax Rule Semantic Rule
<assign> -> <var> = <expr> 1. <expr>.expected_type <- <var>.actual_type
<expr> -> <var>[1] + var[2] 2. <expr>.actual_type <- if (<var>[2].actual_type = int) and

 (<var>[3].actual_type = int)
 then int
 else real
 end if

<expr> -> <var> 3. <expr>.actual_type <- <var>.actual_type
<var> -> A | B | C 4. <var>.actual_type <- look-up(<var>.string)

The look-up function looks up a given variable name in the
symbol table and returns the variable’s type

N.	 Meng,	 S.	 Arthur	 44	

9/29/16	

23	

Predicate Function
•  A predicate function has the form of a

Boolean expression on the union of the
attribute set {A(X0), …, A(Xn)}, and a set of
literal attribute values

•  The only derivations allowed with an
attribute grammar are those in which every
predicate associated with every
nonterminal is true

•  A false predicate function value indicates a
violation of the syntax or static semantic
rules

N.	 Meng,	 S.	 Arthur	 45	

Example Semantic Rules & Predicates

Syntax Rule Semantic Rule
<assign> -> <var> = <expr> R1. <expr>.expected_type <- <var>.actual_type
<expr> -> <var>[1] + var[2] R2. <expr>.actual_type <- if (<var>[1].actual_type = int) and

 (<var>[2].actual_type = int)
 then int
 else real
 end if
 predicate: <expr>.actual_type == <expr>.expected_type

<expr> -> <var> R3. <expr>.actual_type <- <var>.actual_type
 predicate: <expr>.actual_type == <expr>.expected_type

<var> -> A | B | C R4. <var>.actual_type <- look-up(<var>.string)
The look-up function looks up a given variable name in the
symbol table and returns the variable’s type

N.	 Meng,	 S.	 Arthur	 46	

