Short-Circuit Evaluation

* A short-circuit evaluation of an expression
is one in which the result is determined

without evaluating all of the operands and/or

operators
—Consider (a < b) && (b < c¢):

« If a >= b, thereis no point evaluatingb < c
because (a < b) && (b < c) is automatically false

* (x &&y) =if x theny else false
* (x || y) = if x then true elsey

N. Meng, S. Arthur 1

Short-Circuit Evaluation

* Short-circuit evaluation may lead to
unexpected side effects and cause error
-E.g. (a>b) || ((b++)/ 3)

« C, C++,and Java:

— Use short-circuit evaluation for Boolean
operations (&& and |[)

— Also provide bitwise operators that are not
short circuit (& and |)

9/29/16

Short-Circuit Evaluation

* Ada: programmers can specify either

Non-SC eval SC eval
(x ory) (xorelsey)
(x and y) (x and theny)

N. Meng, S. Arthur

Control Structures

— Iterators

— Guarded commands

N. Meng, S. Arthur

9/29/16

Iteration Based on Data Structures

« A data-based iteration statement uses a
user-defined data structure and a user-
defined function to go through the
structure's elements
— The function is called an iterator
— The iterator is invoked at the beginning of

each iteration

— Each time it is invoked, an element from
the data structure is returned

— Elements are returned in a particular order

N. Meng, S. Arthur

class BinTree<T> implements Iterable<T> {

A Java BinTree<T> left;

BinTree<T> right;

Implementation "

for Iterator

// other methods: insert, delete, lookup, ...

public Iterator<T> iterator() {

}

return new Treelterator(this);

private class Treelterator implements Iterator<T> {

}
}

private Stack<BinTree<T>> s = new Stack<BinTree<T>>();
Treelterator (BinTree<T> n) {
if (n.val != null) s.push(n);
}
public boolean hasNext() {
return !s.empty();
}
public T next() {
if ('hasNext()) throw new NoSuchElementException();
BinTree<T> n = s.pop();
if (n.right != null) s.push(n.right);
if (n.left != null) s.push(n.left);
return n.val;
}
public void remove() {
throw new UnsupportedOperationException();

}

9/29/16

9/29/16

Guarded Commands

* New and quite different forms of
selection and loop structures were
suggested by Dijkstra (1975)

« We cover guarded commands because
they are the basis for two linguistic
mechanisms developed later for
concurrent programming in two
languages: CSP and Ada

Motivations of Guarded Commands

* To support a program design
methodology that ensures correctness
during development rather than relying
on verification or testing of completed
programs afterwards

« Also useful for concurrency
« Increased clarity in reasoning

Guarded Commands

 Two guarded forms
— Selection (guarded if)
— Iteration (guarded do)

Guarded Selection

if <boolean> -> <statement>
[] <boolean> -> <statement>

[] <boolean> -> <statement>
fi

« Sementics

— When this construct is reached
* Evaluate all boolean expressions

« If more than one is true, choose one
nondeterministically

* If none is frue, it is a runtime error

« Idea: Forces one to consider all possibilities

N. Meng, S. Arthur

9/29/16

9/29/16

An Example
if i =0 -> sum := sum + i
[]1>7J ->sum := sum + j
[]J>1 ->sum := sum + i
fi

« If i=0and j > i, the construct chooses
nondeterministically between the first
and the third assignment statements

« If i== jand i 2 0, none of the conditions
is True and a runtime error occurs

Guarded Selection

« The construction can be an elegant way
to state that the order of execution, in

some cases, is irrelevant

if X >=y -> max :

[] y > x -> max :

£

—E.q., if x ==y, it does not matter which we
assign to max

— This is a form of abstraction provided by
the nondeterministic semantics

X
y

Guarded Iteration

do <boolean> -> <statement>
[] <boolean> -> <statement>

« Semantics: [] <boolean> -> <statement>
od

— For each iteration
* Evaluate all boolean expressions

« If more than one is true, choose one
nondeterministically, and then start loop again

* If none is true, exit the loop
e Idea: if the order of evaluation is not
important, the program should not specify one

An Example
do gl > g2 -> temp := gl; ql := g2; g2 := temp;
[1 g2 > g3 -> temp := g2; g2 := q3; g3 := temp;
[] g3 > qg4 -> temp :=q3; g3 := q4; g4 := temp;
od

« Given four integer variables: q1, q2, q3,
and g4, rearrange the values so that
ql<q2<q3<q4

« Without guarded iteration, one solution
is to put the values into an array, sort
the array, and then assigns the value
back to the four variables

9/29/16

An Example

« While the solution with guarded
iteration is not difficult, it requires a
good deal of code

 There is considerably increased
complexity in the implementation of the
guarded commands over their
conventional deterministic counterparts

Reference

[1] Robert W. Sebesta, Concepts of
Programming Languages, 8™ edition, pg.
311-338

9/29/16

Semantic Analysis

In Text: Chapter 4

Outline [1]

 Static semantics
— Attribute grammars

« Dynamic semantics
— Operational semantics
— Denotational semantics

N. Meng, S. Arthur

18

9/29/16

Syntax vs. Semantics

« Syntax concerns the form of a valid
program
- Semantics concerns its meaning

* Meaning of a program is important

— It allows us to enforce rules, such as type
consistency, which go beyond the form

— It provides the information needed to
generate an equivalent output program

Two types of semantic rules

» Static semantics
« Dynamic semantics

9/29/16

10

Static Semantics

 There are some characteristics of the
structure of programming languages
that are difficult or impossible to
describe with BNF
— E.g., type compatibility: a floating-point
value cannot be assigned to an integer type
variable, but the opposite is legal

Static Semantics

« The static semantics of a language is
only indirectly related to the meaning of
programs during execution; rather, it
has to do with the legal forms of
programs
— Syntax rather than semantics

« Many static semantic rules of a language
state its type constraints

9/29/16

11

9/29/16

Dynamic semantics

« It describes the meaning of
expressions, statements, and program
units

* Programmers need dynamic semantics to
know precisely what statements of a
language do

« Compiler writers need define the
semantics of the languages for which
they are writing compilers

Role of Semantic Analysis

« Following parsing, the next two phases of
the "typical" compiler are
— semantic analysis
— (intermediate) code generation

12

9/29/16

Role of Semantic Analysis

* The principal job of the semantic
analyzer is to enforce static semantics
— Constructs a syntax tree (usually first)

— Performs analysis of information that is
gathered

— Uses that information later during code
generation

Conventional Semantic Analysis

 Compile-time analysis and run-time
“actions” that enforce language-defined
semantics
— Static semantic rules are enforced at
compile time by the compiler
* Type checking
— Dynamic semantic rules are enforced at
runtime by the compiler-generated code
* Bounds checking

13

STATIC SEMANTICS

Attribute Grammar

« A device used to describe more of the
structure of a programming language
than can be described with a context-
free grammar

* It provides a formal framework for
decorating parse trees

* An attribute grammar is an extension
to a context-free grammar

9/29/16

14

9/29/16

Attribute Grammar

* The extension includes
— Attributes
— Attribute computation functions
— Predicate functions

A Running Example

« Context-Free Grammar (CFG)

<assign> -> <var> = <expr>
<expr> -> <var> + <var>
<expr> -> <var>
<var> ->A | B | C

* Note:

— It only focuses on potential structured
sequence of tokens

— Tt says nothing about the meaning of any
particular program

15

Attributes

+ Associated with each grammar symbol X
is a set of attributes A(X). The set
A(X) consists of two disjoint sets: S(X)
and I(X)

Attributes

« S(X): synthesized attributes, which are
used to pass semantic information up a
parse free

9/29/16

16

Attributes

« I(X): inherited attributes, which pass
semantic information down or across a
tree. Similar to variables because they
can also have values assigned to them

Intrinsic Attributes

 Synthesized attributes of leaf nodes
whose values are determined outside
the parse tree
— E.qg., the type of a variable can come from
the symbol table

— Given the intrinsic attribute values on a
parse tree, the semantic functions can be
used to compute the remaining attribute
values

9/29/16

17

9/29/16

Example Synthesized Attribute

* actual_type
— A synthesized attribute associated with

nonterminals: <var> and <expr>
— It is used to store the actual type, int or

real, of a variable or expression
— For each variable, the actual_type is

infrinsic
— For expressions and assignments, the
attribute is determined by the actual types

of children nodes

Evaluation Order of Synthesized

Attribute actual_type
* Parser tree of

<assign>
A=A+B
<var> < >
v actual_type g actual_type e A Gnd B have

A 7 \
/ A\ type “real” or
/N N \ we o :
/ <var>[2] - <var>[3] ! int" according
! actual_type actua’l_type to The SymbOI
/ A f
,’1' l,'l \ lll *able

A = A / + B /

9/29/16

Example Inherited Attribute

« expected_type
— An inherited attribute associated with the
nonterminal <expr>
— It is used fo store the expected type,

either int or real
— It is determined by the type of the
variable on the left side of the assignment

statement

Evaluation Order of Inherited
Attribute expected_type

<assign>
s The
..-——==1-> expected_type <expr> expeCTed_Type
actual e |
t ‘_typ of <expr'> Is
decided by the

Lo
<var> ¢

actual_type
4

\
N

NN
'<var>[azc1ual‘ typec1c’ruc1l_‘rype of
7 the assignment's
" left side

1
1
1
1
1

1
i
1
/
<var>[1] ==
actual_type

B’

Attribute Grammar

« Defines the attributes, and attribute
evaluation rules mentioned in the

example

N. Meng, S. Arthur 39

Example Attribute Grammar

Syntax Rule

Semantic Rule

<assign> -> <var> = <expr>

R1. <expr>.expected type <- <var>.actual type

<expr> -> <var>[1] + var[2]

R2. <expr>.actual type <- if (<var>[2].actual type = int) and
(<var>[3].actual_type = int)
then int
else real
end if
predicate: <expr>.actual type == <expr>.expected_type

<expr> -> <var>

R3. <expr>.actual_type <- <var>.actual type
predicate: <expr>.actual type == <expr>.expected type

<var>->A|B|C

R4. <var>.actual_type <- look-up(<var>.string)
The look-up function looks up a given variable name in the
symbol table and returns the variable’s type

N. Meng, S. Arthur 40

9/29/16

20

Semantic Functions

 Associated with each grammar rule is a
set of semantic functions and a possibly
empty set of predicate functions over
the attributes of the symbols in the
grammar rule

« Specify how attribute values are
computed for S(X) and I(X)

Semantic Functions

 For a rule X,->X;..X,, the synthesized
attributes of X, are computed with
semantic functions of the form S(X;) =
f(A(Xy), ..., ACX,))

* The value of a synthesized attribute on
a parse tree node depends only on the
attribute values of the children node

9/29/16

21

Semantic Functions

* Inherited attributes of symbols X;, 1j<n,
are computed with a semantic function of
the form I(X;) = f(A(Xp). ... A(Xy))

* The value of an inherited attribute on a
parse tree node depends on the attribute
values of the node's parent and siblings

 To avoid circularity, inherited attributes
are often restricted to functions of the
form I(X;) = f(A(Xo), ... A(X.1))

N. Meng, S. Arthur 43

Revisit the Semantic Functions

Syntax Rule Semantic Rule

<assign> -> <var> = <expr> | l. <expr>.expected_type <- <var>.actual_type

<expr> -> <var>[1] + var[2] | 2. <expr>.actual_type <- if (<var>[2].actual_type = int) and
(<var>[3].actual_type = int)

then int

else real

end if
<expr> -> <var> 3. <expr>.actual_type <- <var>.actual_type
<var>->A|B|C 4. <var>.actual_type <- look-up(<var>.string)

The look-up function looks up a given variable name in the
symbol table and returns the variable’s type

N. Meng, S. Arthur 44

9/29/16

22

Predicate Function

* A predicate function has the form of a
Boolean expression on the union of the
attribute set {A(Xy), ..., A(X,)}, and a set of
literal attribute values

 The only derivations allowed with an
attribute grammar are those in which every
predicate associated with every
nonterminal is frue

* A false predicate function value indicates a
violation of the syntax or static semantic
rules

N. Meng, S. Arthur 45

Example Semantic Rules & Predicates

Syntax Rule Semantic Rule

<assign> -> <var> = <expr> | R1. <expr>.expected_type <- <var>.actual type

<expr> -> <var>[1] + var[2] | R2. <expr>.actual type <- if (<var>[1].actual_type = int) and
(<var>[2].actual_type = int)
then int
else real
end if
predicate: <expr>.actual_type == <expr>.expected_type

<expr> -> <var> R3. <expr>.actual_type <- <var>.actual_type
predicate: <expr>.actual_type == <expr>.expected_type

<var>->A|B|C R4. <var>.actual_type <- look-up(<var>.string)
The look-up function looks up a given variable name in the
symbol table and returns the variable’s type

N. Meng, S. Arthur 46

9/29/16

23

