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Short-Circuit Evaluation 

•  A short-circuit evaluation of an expression 
is one in which the result is determined 
without evaluating all of the operands and/or 
operators 
– Consider (a < b) && (b < c): 
•  If a >= b, there is no point evaluating b < c   

because (a < b) && (b < c) is automatically false 

•  (x && y) ≡ if x then y else false 
•  (x || y)  ≡ if x then true else y 
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Short-Circuit Evaluation 

•  Short-circuit evaluation may lead to 
unexpected side effects and cause error 
– E.g., (a > b) || ((b++) / 3) 

•  C, C++, and Java: 
– Use short-circuit evaluation for Boolean 

operations (&& and ||) 
– Also provide bitwise operators that are not 
short circuit (& and |) 
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Short-Circuit Evaluation 

•  Ada: programmers can specify either 

 Non-SC eval  SC eval 
 (x or y)    ( x or else y ) 
 (x and y)   ( x and then y ) 
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Control Structures 

•  Selection 
•  Iteration 
– Iterators 

•  Recursion 
•  Concurrency & non-determinism 
– Guarded commands 
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Iteration Based on Data Structures 

•  A data-based iteration statement uses a 
user-defined data structure and a user-
defined function to go through the 
structure’s elements 
– The function is called an iterator 
– The iterator is invoked at the beginning of 

each iteration 
– Each time it is invoked, an element from 

the data structure is returned  
– Elements are returned in a particular order 
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A Java 
Implementation 
for Iterator 
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Guarded Commands 

•  New and quite different forms of 
selection and loop structures were 
suggested by Dijkstra (1975) 

•  We cover guarded commands because 
they are the basis for two linguistic 
mechanisms developed later for 
concurrent programming in two 
languages: CSP and Ada 
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Motivations of Guarded Commands 

•  To support a program design 
methodology that ensures correctness 
during development rather than relying 
on verification or testing of completed 
programs afterwards 

•  Also useful for concurrency 
•  Increased clarity in reasoning 
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Guarded Commands 

•  Two guarded forms 
– Selection (guarded if) 
– Iteration (guarded do) 
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Guarded Selection 

•  Sementics 
– When this construct is reached 
•  Evaluate all boolean expressions  
•  If more than one is true, choose one 

nondeterministically 
•  If none is true, it is a runtime error 

•  Idea: Forces one to consider all possibilities 
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if <boolean> -> <statement> 
[] <boolean> -> <statement> 
     ... 
[] <boolean> -> <statement> 
fi 
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An Example 

•  If i = 0 and j > i, the construct chooses 
nondeterministically between the first 
and the third assignment statements 

•  If i == j and i ≠ 0, none of the conditions 
is true and a runtime error occurs 
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if i = 0 -> sum := sum + i 
[] i > j -> sum := sum + j 
[] j > i -> sum := sum + i 
fi 

Guarded Selection 

•  The construction can be an elegant way 
to state that the order of execution, in 
some cases, is irrelevant 

– E.g., if x == y, it does not matter which we 
assign to max 

– This is a form of abstraction provided by 
the nondeterministic semantics 
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if x >= y -> max := x 
[] y >= x -> max := y 
fi 
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Guarded Iteration 

•  Semantics:  
– For each iteration 
•  Evaluate all boolean expressions 
•  If more than one is true, choose one 

nondeterministically, and then start loop again 
•  If none is true, exit the loop 

•  Idea: if the order of evaluation is not 
important, the program should not specify one 
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do <boolean> -> <statement> 

[]  <boolean> -> <statement> 

      ... 
[]  <boolean> -> <statement> 

od 

An Example 

•  Given four integer variables: q1, q2, q3, 
and q4, rearrange the values so that  
q1 ≤ q2 ≤ q3 ≤ q4 

•  Without guarded iteration, one solution 
is to put the values into an array, sort 
the array, and then assigns the value 
back to the four variables 
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do q1 > q2 -> temp := q1; q1 := q2; q2 := temp; 

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp; 

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp; 
od 
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An Example 

•  While the solution with guarded 
iteration is not difficult, it requires a 
good deal of code 

•  There is considerably increased 
complexity in the implementation of the 
guarded commands over their 
conventional deterministic counterparts 
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Semantic Analysis 

In Text: Chapter 4 

Outline [1] 

•  Static semantics 
– Attribute grammars 

•  Dynamic semantics 
– Operational semantics 
– Denotational semantics 
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Syntax vs. Semantics 

•  Syntax concerns the form of a valid 
program 

•  Semantics concerns its meaning 
•  Meaning of a program is important  
– It allows us to enforce rules, such as type 

consistency, which go beyond the form 
– It provides the information needed to 

generate an equivalent output program 
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Two types of semantic rules 

•  Static semantics 
•  Dynamic semantics 
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Static Semantics 

•  There are some characteristics of the 
structure of programming languages 
that are difficult or impossible to 
describe with BNF 
– E.g., type compatibility: a floating-point 

value cannot be assigned to an integer type 
variable, but the opposite is legal 
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Static Semantics 

•  The static semantics of a language is 
only indirectly related to the meaning of 
programs during execution; rather, it 
has to do with the legal forms of 
programs  
– Syntax rather than semantics 

•  Many static semantic rules of a language 
state its type constraints 
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Dynamic semantics 

•  It describes the meaning of 
expressions, statements, and program 
units 

•  Programmers need dynamic semantics to 
know precisely what statements of a 
language do 

•  Compiler writers need define the 
semantics of the languages for which 
they are writing compilers  
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Role of Semantic Analysis 

•  Following parsing, the next two phases of 
the "typical" compiler are  
– semantic analysis 
– (intermediate) code generation 
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Role of Semantic Analysis 

•  The principal job of the semantic 
analyzer is to enforce static semantics 
– Constructs a syntax tree (usually first) 
– Performs analysis of information that is 

gathered  
– Uses that information later during code 

generation 
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Conventional Semantic Analysis 

•  Compile-time analysis and run-time 
“actions” that enforce language-defined 
semantics 
– Static semantic rules are enforced at 

compile time by the compiler 
•  Type checking 

– Dynamic semantic rules are enforced at 
runtime by the compiler-generated code 
•  Bounds checking 
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STATIC SEMANTICS 
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Attribute Grammar 

•  A device used to describe more of the 
structure of a programming language 
than can be described with a context-
free grammar 

•  It provides a formal framework for 
decorating parse trees 

•  An attribute grammar is an extension 
to a context-free grammar 
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Attribute Grammar 
•  The extension includes 
– Attributes 
– Attribute computation functions 
– Predicate functions 
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•  Context-Free Grammar (CFG) 

•  Note: 
–  It only focuses on potential structured 

sequence of tokens 
–  It says nothing about the meaning of any 

particular program 

A Running Example 

<assign> -> <var> = <expr> 
<expr>  -> <var> + <var> 
<expr>  -> <var> 
<var>  -> A | B | C 
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Attributes 
•  Associated with each grammar symbol X 

is a set of attributes A(X). The set 
A(X) consists of two disjoint sets: S(X) 
and I(X) 
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Attributes 

•  S(X): synthesized attributes, which are 
used to pass semantic information up a 
parse tree 
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Attributes 

•  I(X): inherited attributes, which pass 
semantic information down or across a 
tree. Similar to variables because they 
can also have values assigned to them 
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Intrinsic Attributes 

•  Synthesized attributes of leaf nodes 
whose values are determined outside 
the parse tree 
– E.g., the type of a variable can come from 

the symbol table 
– Given the intrinsic attribute values on a 

parse tree, the semantic functions can be 
used to compute the remaining attribute 
values 
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Example Synthesized Attribute 

•  actual_type 
– A synthesized attribute associated with 

nonterminals: <var> and <expr> 
– It is used to store the actual type, int or 

real, of a variable or expression 
– For each variable, the actual_type is 

intrinsic 
– For expressions and assignments, the 

attribute is determined by the actual types 
of children nodes 
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Evaluation Order of Synthesized 
Attribute actual_type 
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<assign>	  

<var>	   <expr>	  

A	   =	  

<var>[2]	   <var>[3]	  

A	   +	   B	  

actual_type	  

actual_type	   actual_type	  

actual_type	  

•  Parser tree of 
A = A + B 

•  A and B have 
type “real” or 
“int” according 
to the symbol 
table 
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Example Inherited Attribute 

•  expected_type 
– An inherited attribute associated with the 

nonterminal <expr> 
– It is used to store the expected type, 

either int or real 
– It is determined by the type of the 

variable on the left side of the assignment 
statement 
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Evaluation Order of Inherited 
Attribute expected_type 

•  The 
expected_type 
of <expr> is 
decided by the 
actual_type of 
the assignment’s 
left side 
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<assign>	  

<var>	   <expr>	  

A	   =	  

<var>[1]	   <var>[2]	  

A	   +	   B	  

actual_type	  

expected_type	  

actual_type	   actual_type	  

actual_type	  
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Attribute Grammar 

•  Defines the attributes, and attribute 
evaluation rules mentioned in the 
example 
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Example Attribute Grammar 
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Syntax Rule Semantic Rule 
<assign> -> <var> = <expr> R1. <expr>.expected_type <- <var>.actual_type 
<expr> -> <var>[1] + var[2] R2. <expr>.actual_type <- if (<var>[2].actual_type = int) and  

                                        (<var>[3].actual_type = int) 
                                     then int 
                                     else real 
                                     end if 
       predicate: <expr>.actual_type == <expr>.expected_type 

<expr> -> <var> R3. <expr>.actual_type <- <var>.actual_type 
      predicate: <expr>.actual_type == <expr>.expected_type 

<var> -> A | B | C R4. <var>.actual_type <- look-up(<var>.string)  
The look-up function looks up a given variable name in the 
symbol table and returns the variable’s type 
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Semantic Functions 

•  Associated with each grammar rule is a 
set of semantic functions and a possibly 
empty set of predicate functions over 
the attributes of the symbols in the 
grammar rule 

•  Specify how attribute values are 
computed for S(X) and I(X) 
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Semantic Functions 

•  For a rule X0->X1…Xn, the synthesized 
attributes of X0 are computed with 
semantic functions of the form S(X0) = 
f(A(X1), …, A(Xn)) 

•  The value of a synthesized attribute on 
a parse tree node depends only on the 
attribute values of the children node 

N.	  Meng,	  S.	  Arthur	   42	  



9/29/16	  

22	  

Semantic Functions 
•  Inherited attributes of symbols Xj, 1≤j≤n, 

are computed with a semantic function of 
the form I(Xj) = f(A(X0), …, A(Xn)) 

•  The value of an inherited attribute on a 
parse tree node depends on the attribute 
values of the node’s parent and siblings 

•  To avoid circularity, inherited attributes 
are often restricted to functions of the 
form I(Xj) = f(A(X0), …, A(Xj-1)) 
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Revisit the Semantic Functions 

Syntax Rule Semantic Rule 
<assign> -> <var> = <expr> 1. <expr>.expected_type <- <var>.actual_type 
<expr> -> <var>[1] + var[2] 2. <expr>.actual_type <- if (<var>[2].actual_type = int) and  

                                        (<var>[3].actual_type = int) 
                                     then int 
                                     else real 
                                     end if 

<expr> -> <var> 3. <expr>.actual_type <- <var>.actual_type 
<var> -> A | B | C 4. <var>.actual_type <- look-up(<var>.string)  

The look-up function looks up a given variable name in the 
symbol table and returns the variable’s type 
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Predicate Function 
•  A predicate function has the form of a 

Boolean expression on the union of the 
attribute set {A(X0), …, A(Xn)}, and a set of 
literal attribute values 

•  The only derivations allowed with an 
attribute grammar are those in which every 
predicate associated with every 
nonterminal is true 

•  A false predicate function value indicates a 
violation of the syntax or static semantic 
rules 
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Example Semantic Rules & Predicates 

Syntax Rule Semantic Rule 
<assign> -> <var> = <expr> R1. <expr>.expected_type <- <var>.actual_type 
<expr> -> <var>[1] + var[2] R2. <expr>.actual_type <- if (<var>[1].actual_type = int) and  

                                        (<var>[2].actual_type = int) 
                                     then int 
                                     else real 
                                     end if 
      predicate: <expr>.actual_type == <expr>.expected_type 

<expr> -> <var> R3. <expr>.actual_type <- <var>.actual_type 
      predicate: <expr>.actual_type == <expr>.expected_type 

<var> -> A | B | C R4. <var>.actual_type <- look-up(<var>.string)  
The look-up function looks up a given variable name in the 
symbol table and returns the variable’s type 
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