
9/27/16	

1	

Expression Evaluation and
Control Flow

In Text: Chapter 6

Outline

•  Notation
•  Operator Evaluation Order
•  Operand Evaluation Order
•  Overloaded operators
•  Type conversions
•  Short-circuit evaluation of conditions
•  Control structures

2	 N.	 Meng,	 S.	 Arthur	

9/27/16	

2	

Arithmetic Expressions

•  Design issues for arithmetic expressions
– Notation form?
– What are the operator precedence rules?
– What are the operator associativity rules?
– What is the order of operand evaluation?
– Are there restrictions on operand evaluation

side effects?
– Does the language allow user-defined operator

overloading?
3	 N.	 Meng,	 S.	 Arthur	

Operators

•  A unary operator has one operand
•  A binary operator has two operands
•  A ternary operator has three

operands
•  Functions can be viewed as unary

operators with an operand of a simple
list

N.	 Meng,	 S.	 Arthur	 4	

9/27/16	

3	

Operators

•  Argument lists (or parameter lists)
treat separators (comma, space) as
“stacking” or “append” operators

•  A keyword in a language statement can
be viewed as functions in which the
remainder of the statement is the
operand

N.	 Meng,	 S.	 Arthur	 5	

Notation & Placement

•  Prefix
– op a b op(a,b) (op a b)

•  Infix
– a op b

•  Postfix
– a b op

N.	 Meng,	 S.	 Arthur	 6	

9/27/16	

4	

Notation & Placement

•  Most imperative languages use infix
notation for binary and prefix for unary
operators

•  Lisp: prefix
– (op a b)

N.	 Meng,	 S.	 Arthur	 7	

Operator Evaluation Order [1]

•  Precedence
•  Associativity
•  Parentheses

N.	 Meng,	 S.	 Arthur	 8	

9/27/16	

5	

Operator Precedence

•  Define the order in which “adjacent”
operators of different precedence
levels are evaluated
–  Parenthetical groups (...)
–  Exponentiation **
–  Mult & Div * , /
–  Add & Sub + , -
–  Assignment :=

•  Where to put the parentheses?
– E.g., A * B + C ** D / E - F

N.	 Meng,	 S.	 Arthur	 9	

Operator Associativity

•  Define the order in which adjacent
operators with the same precedence
level are evaluated:
– Left associative * , / , + , -
– Right associative ** (exponentiation)

•  Where to put the parentheses?
– E.g., B ** C ** D - E + F * G / H

N.	 Meng,	 S.	 Arthur	 10	

9/27/16	

6	

Operator Associativity

•  EFFECTIVELY
– Most programming languages evaluate

expressions from left to right
– LISP uses parentheses to enforce

evaluation order
– APL is strictly RIGHT to LEFT, taking note

only of parenthetical groups

N.	 Meng,	 S.	 Arthur	 11	

Operator Associativity

•  Associativity
– For some operators, the evaluation order

does not matter, i.e., (A + B) + C = A + (B + C)
•  However, in a computer when floating-

point numbers are represented
approximately, the mathematical
“associativity” does not always hold
– E.g., A = 200, B = Float.MIN_VALUE, C = -10

N.	 Meng,	 S.	 Arthur	 12	

9/27/16	

7	

Parentheses

•  Programmers can alter the precedence
and associativity rules by placing
parentheses in expressions

•  A parenthesized part of an expression
has precedence over its adjacent
unparenthesized parts

N.	 Meng,	 S.	 Arthur	 13	

Parentheses

•  Advantages
– Allow programmers to specify any desired

order of evaluation
– Do not require author or reader of

programs to remember any precedence or
association rules

•  Disadvantages
– Can make writing expressions more tedious
– May seriously compromise code readability

N.	 Meng,	 S.	 Arthur	 14	

9/27/16	

8	

Operand Evaluation Order

•  If none of the operands of an operator
has side effects, then the operand
evaluation order does not matter

•  What are side effects ?
•  Referential transparency and side

effects

N.	 Meng,	 S.	 Arthur	 15	

Side Effects

•  Often discussed in the context of
functions

•  A side effect is some permanent state
change caused by execution of functions

•  The subsequent computation is influenced
other than by the return value for use
– j = i++
– a = 10, b = a + fun(&a) (assume the function

can change its parameter value)
N.	 Meng,	 S.	 Arthur	 16	

9/27/16	

9	

Side Effects

•  Many imperative languages distinguish
between
– expressions, which always produce values,

and may or may not have side effects, and
– statements, which are executed solely for

their side effects, and return no useful
value

•  Imperative programming is sometimes
called “computing via side effects”

N.	 Meng,	 S.	 Arthur	 17	

Side Effects

•  Pure functional languages have no side
effects
– The value of an expression depends only on

the referencing environment in which the
expression is evaluated, not the time at
which the evaluation occurs
•  If an expression yields a certain value at one

point in time, it is guaranteed to yield the same
value at any point in time

N.	 Meng,	 S.	 Arthur	 18	

9/27/16	

10	

How to avoid side effects ?

•  Design the language to disallow
functional side effects
– No pass-by-reference parameters in

functions
– Disallow global variable access in functions

•  Concerns
– Programmers need the flexibility to return

more than one value from a function
– Passing parameters is inefficient compared

with accessing global variables
N.	 Meng,	 S.	 Arthur	 19	

How to avoid side effects ?

•  Design the language with a strictly fixed
evaluation order between operands

•  Concerns
– Disallow some optimizations which involve

reordering operand evaluations

N.	 Meng,	 S.	 Arthur	 20	

9/27/16	

11	

Referential Transparency and Side
Effects

•  A program has the property of
referential transparency if any two
expressions having the same value can
be substituted for one another
E.g., result1 = (fun(a) + b) / (fun(a) – c); ó
 temp = fun(a);
 result2 = (temp + b) / (temp - c),
given that the function fun has no side
effect

N.	 Meng,	 S.	 Arthur	 21	

Key points of referentially
transparent programs

•  Semantics is much easier to understand
– Being referentially transparent makes a

function equivalent to a mathematical
function

•  Programs written in pure functional
languages are referentially transparent

•  The value of a referentially transparent
function depends on its parameters, and
possibly one or more global constants

N.	 Meng,	 S.	 Arthur	 22	

9/27/16	

12	

Overloaded Operators

•  The multiple use of an operator is called
operator overloading
– E.g., “+” is used to specify integer addition,

floating-point addition, and string catenation
•  Do not use the same symbol for two

completely unrelated operations, because
that can decrease readability
– In C, “&” can represent a bitwise AND

operator, and an address-of operator
N.	 Meng,	 S.	 Arthur	 23	

Type Conversion

•  Narrowing conversion
– To convert a value to a type that cannot

store all values of the original type
– E.g., double->float, float->int

•  Widening conversion
– To convert a value to a type that can

include all values belong to the original type
– E.g., int->float, float->double

N.	 Meng,	 S.	 Arthur	 24	

9/27/16	

13	

Narrowing Conversion vs. Widening
Conversion

•  Narrowing conversion are not always safe
– The magnitude of the converted value can be

changed
– E.g., float->int with 1.3E25, the converted

value is distantly related to the original one
•  Widening conversion is always safe
– However, some precision may be lost
– E.g., int->float, integers have at least 9

decimal digits of precision, while floats have
7 decimal digits of precision

25	

Implicit Type Conversion

•  A coercion is an implicit type conversion
•  Arithmetic expressions with operators

that can have differently typed
operands are called mixed-mode
expressions

•  Languages allowing such expressions
must define implicit operand type
conversions

N.	 Meng,	 S.	 Arthur	 26	

9/27/16	

14	

Implicit Type Conversion

•  Implicit type conversion can be achieved by
narrowing or widening one or more operators

•  It is better to widen when possible
– E.g., x = 3, z = 5.9

 y = 17 if x is widened, y = 15 if z is narrowed

N.	 Meng,	 S.	 Arthur	 27	

var	 x,	 y:	 integer;	
	 	 	 	 	 	 	 z:	 real;	
	 	 	 	 	 	 	 ...	
y	 :=	 x	 *	 z;	 	 	 	 /*	 x	 is	 automaHcally	 converted	 to	 “real”	 	 */	

Key Points of Implicit Coercions

•  They decrease the type error detection
ability of compilers
– Did you really mean to use “mixed-mode

expressions” ?
•  In most languages, all numeric types are

coerced in expressions, using widening
conversions

N.	 Meng,	 S.	 Arthur	 28	

9/27/16	

15	

Explicit Type Conversion

•  Also called “casts”
•  Ada example
 FLOAT(INDEX)-- INDEX is an INTEGER
•  C example:
 (int) speed /* speed is a float */

N.	 Meng,	 S.	 Arthur	 29	

