
9/22/16	

1	

Introduction to Python

Chen Lin [1]
Modified by Na Meng

Overview

•  Development Environments
•  Global and Local Variables
•  Data Types/Structures
•  Control Flow
•  File I/O
•  Functions

2	

9/22/16	

2	

Development Environments
1. PyDev with Eclipse
2. Komodo
3. Emacs
4. Vim
5. TextMate
6. Gedit
7. Idle
8. PIDA (Linux)(VIM Based)
9. NotePad++ (Windows)
10.BlueFish (Linux)

3	

Pydev with Eclipse

4	

9/22/16	

3	

Python Interactive Shell

% python
Python 2.6.1 (r261:67515, Feb 11 2010,

00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on

darwin
Type "help", "copyright", "credits" or

"license" for more information.
>>>

5	

Python Interactive Shell
You can type things directly into a running

Python session
>>> 2+3*4
14
>>> name = "Andrew"
>>> name
'Andrew'
>>> print ("Hello", name)
Hello Andrew
>>>

6	

9/22/16	

4	

Global and Local Variables [2]

•  An example
 def f():

 print(s)
 s = “I hate spam”
 f()

•  s is a global variable
•  What is the output?

7	

Global and Local Variables

•  Another example
 def f():

 s = “Me too.”
 print(s)

 s = “I hate spam.”
 f()
 print(s)

•  What is the output?

8	

s is a local variable.

s is a global variable.

9/22/16	

5	

Global and Local Variables
•  A third example

 def f():
 print(s)
 s = “Me too.”
 print(s)
 s = “I hate spam.”
 f()
 print(s)

•  What is the output?
9	

Global and Local Variables

•  UnboundLocalError: local variable 's'
referenced before assignment

•  Python assumes that we want a local
variable due to the assignment to s in
f()

•  How can we tell Python that we want to
use the global variable?

10	

9/22/16	

6	

Global and Local Variables

•  Correction
 def f():
 global s
 print(s)
 s = “Me too.”
 print(s)
 s = “I hate spam.”
 f()
 print(s)

 11	

Data Types/Structures

•  List
•  String
•  Tuple
•  Dictionary
•  Set

12	

9/22/16	

7	

List

A compound data type:
[0]
[2.3, 4.5]
[5, "Hello", "there", 9.8]
[]
Use len() to get the length of a list
>>> names = [“Ben", “Chen", “Yaqin"]
>>> len(names)
3

13	

Use [] to index items in the list
>>> names[0]
‘Ben'
>>> names[1]
‘Chen'
>>> names[2]
‘Yaqin'
>>> names[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

14	

[0] is the first item.
[1] is the second item
...
Out of range values
raise an exception

9/22/16	

8	

Use [] to index items in the list

>>> names[-1]
‘Yaqin'
>>> names[-2]
‘Chen'
>>> names[-3]
‘Ben'

15	

Negative values
go backwards from
the last element.

Strings share many features with
lists

>>> smiles = "C(=N)(N)N.C(=O)(O)O"
>>> smiles[0]
'C'
>>> smiles[1]
'('
>>> smiles[-1]
'O'

16	

9/22/16	

9	

Strings share many features with
lists

>>> smiles[1:5]
'(=N)'
>>> smiles[10:-4]
'C(=O)'

17	

Use “slice” notation to
get a substring

String Methods: find, split, …
smiles = "C(=N)(N)N.C(=O)(O)O"
>>> smiles.find("(O)")
15
>>> smiles.find(".")
9
>>> smiles.find(".", 10)
-1
>>> smiles.split(".")
['C(=N)(N)N', 'C(=O)(O)O']
>>>

18	

Use “find” to find the
start of a substring.

Start looking at
position 10.

Split the string into parts
with “.” as the delimiter

9/22/16	

10	

String operators: in, not in

if "Br" in “Brother”:
 print "contains brother“

email_address = “clin”
if "@" not in email_address:
 email_address += "@brandeis.edu“

19	

Lists are mutable

>>> ids = ["9pti", "2plv", "1crn"]
>>> ids.append("1alm")
>>> ids
['9pti', '2plv', '1crn', '1alm']
>>>ids.extend(L)
Extend the list by appending all the items

in the given list; equivalent to a[len(a):]
= L.

20	

append an element

append a list

9/22/16	

11	

Lists are mutable

>>> del ids[0]
>>> ids
['2plv', '1crn', '1alm']
>>> ids.sort()
>>> ids
['1alm', '1crn', '2plv']
>>> ids.reverse()
>>> ids
['2plv', '1crn', '1alm’]

21	

remove an element

sort by default order

reverse the elements
in a list

Lists are mutable

>>> ids.insert(0, "9pti")
>>> ids
['9pti', '2plv', '1crn', '1alm']

22	

insert an element at some
specified position.
(Slower than .append())

9/22/16	

12	

Zipping Lists Together

23	

>>> names
['ben', 'chen', 'yaqin']

>>> gender = [0, 0, 1]

>>> zip(names, gender)
[('ben', 0), ('chen', 0), ('yaqin', 1)]

Tuple: Like Immutable List
>>> yellow = (255, 255, 0) # r, g, b
>>> one = (1,)
>>> yellow[0]
>>> 255
>>> yellow[1:]
(255, 0)
>>> yellow[0] = 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not

support item assignment
24	

9/22/16	

13	

Tuple: Like Immutable List

Very common in string
interpolation:

>>> "%s lives in %s at latitude %.1f" %
("Andrew", "Sweden", 57.7056)

'Andrew lives in Sweden at latitude 57.7'

25	

Dictionary

•  Dictionaries are lookup tables
•  They map from a “key” to a “value”.
 symbol_to_name = {
 "H": "hydrogen",
 "He": "helium",
 "Li": "lithium",
 "C": "carbon",
 "O": "oxygen",
 "N": "nitrogen”
 }

26	

9/22/16	

14	

Dictionary
•  Duplicate keys are not allowed
•  Duplicate values are just fine
•  Keys can be any immutable value

numbers, strings, tuples, not list,
dictionary, set, ...

>>> symbol_to_name["C"]
'carbon'
>>> "O" in symbol_to_name, "U" in

symbol_to_name
(True, False)

27	

Set

•  Sets are lists with no duplicate entries
>>> a = set([“Jake”, “John”, “Eric”])
>>> b = set([“John”, “Jill”])
>>> a.intersection(b)
set([‘John’])
>>> a.difference(b)
set(['Jake', 'Eric'])
>>> a.symmetric_difference(b)
set(['Jill', 'Jake', 'Eric'])
 28	

9/22/16	

15	

Control Flow

Things that are False
•  The boolean value False
•  The numbers 0 (integer), 0.0 (float) and

0j (complex).
•  The empty string "".
•  The empty list [], empty dictionary {}

and empty set set().

29	

Control Flow

Things that are True
•  The boolean value True
•  All non-zero numbers.
•  Any string containing at least one

character.
•  A non-empty data structure.

30	

9/22/16	

16	

Examples

>>> smiles = "BrC1=CC=C(C=C1)NN.Cl"
>>> bool(smiles)
True
>>> not bool(smiles)
False

31	

If-statement

>>> if not smiles:
... print "The SMILES string is empty"
...
•  Indentation is important to indicate

program structure
•  The “else” case is always optional

32	

9/22/16	

17	

“elif” is used to chain subsequent
tests

>>> mode = "absolute"
>>> if mode == "canonical":
... smiles = "canonical"
... elif mode == "isomeric":
... smiles = "isomeric”
... elif mode == "absolute":
... smiles = "absolute"
... else:
... raise TypeError("unknown mode")
...
>>> smiles

33	

“raise” is the Python way to
raise exceptions

Boolean Logic

Python expressions can have “and”s and
“or”s:

if (ben <= 5 and chen >= 10 or
chen == 500 and ben != 5):
 print “Ben and Chen“

34	

9/22/16	

18	

For-statement

>>> names = [“Ben", “Chen", “Yaqin"]
>>> for name in names:
... print name
...
Ben
Chen
Yaqin

35	

Tuple Assignment in For Loops

data = [("C20H20O3", 308.371),
 ("C22H20O2", 316.393),
 ("C24H40N4O2", 416.6),
 ("C14H25N5O3", 311.38),
 ("C15H20O2", 232.3181)]

for (formula, mw) in data:
 print "The molecular weight of %s is %s"
% (formula, mw)

36	

9/22/16	

19	

Tuple Assignment in For Loops

The molecular weight of C20H20O3 is 308.371
The molecular weight of C22H20O2 is 316.393
The molecular weight of C24H40N4O2 is 416.6
The molecular weight of C14H25N5O3 is 311.38
The molecular weight of C15H20O2 is 232.3181

37	

break, continue
>>> for value in [3, 1, 4, 1, 5, 9, 2]:
... print "Checking", value
... if value > 8:
... print "Exiting for loop"
... break
... elif value < 3:
... print "Ignoring"
... continue
... print "The square is", value**2
...

38	

9/22/16	

20	

Range()

•  “range” creates a list of numbers in a
specified range

•  range([start,] stop[, step]) -> list of
integers

•  When step is given, it specifies the
increment (or decrement).

39	

Range()

>>> range(5)
[0, 1, 2, 3, 4]
>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 2)
[0, 2, 4, 6, 8]

40	

9/22/16	

21	

Reading Files

>>> f = open(“names.txt")
>>> f.readline()
'Yaqin\n’

41	

Read Lines in a Loop

>>> lst= [x for x in
open("text.txt","r").readlines()]

>>> lst
['Chen Lin\n', 'clin@brandeis.edu\n',

'Volen 110\n', 'Office Hour: Thurs.
3-5\n', '\n', 'Yaqin Yang\n',
'yaqin@brandeis.edu\n', 'Volen 110\n',
'Offiche Hour: Tues. 3-5\n']

42	

9/22/16	

22	

File Output

input_file = open(“in.txt")
output_file = open(“out.txt", "w")
for line in input_file:
 output_file.write(line)

43	

“w” = “write mode”
“a” = “append mode”
“wb” = “write in binary”
“r” = “read mode” (default)
“rb” = “read in binary”
“U” = “read files with Unix
or Windows line endings”

Functions

•  Python provides many built-in functions
like print(), etc.

•  But you can also create your own
functions—user-defined functions

44	

9/22/16	

23	

def
#!/usr/bin/python

Function definition is here
def printme(str):

 print str
 return;

•  # Now you can call printme function
•  printme("I'm first call to user defined function!")
•  printme("Again second call to the same function")

45	

Nested Functions

def outer(num1):
 def inner_increment(num1):
 return num1 + 1
 num2 = inner_increment(num1)
 print(num1, num2)

46	

9/22/16	

24	

Program Assignment 1

•  An Evaluator for Logical Expressions
Written in Postfix Notation
– Write a Python program that computes the

value of logic expressions provided in postfix
notation.

– E.g., given the string “0!1&” (infix: “!0&1”),
where “0” means “False” and “1” means “True”.
Your calculator will compute “1” as the answer

– All strings provided will be valid

47	

Program Assignment 1

•  The logic manipulation operators are:
"!” logical NOT RIGHT associative
"&” logical AND LEFT associative
"/” logical NOT EQUAL LEFT associative
"=“ logical EQUAL LEFT associative
"|" logical OR LEFT associative

48	

9/22/16	

25	

Program Assignment 1

•  Your calculator will use stack to
compute/store all intermediate
computations

•  You will implement your own push and
pop stack operations

•  The ONLY library or built-in method
that you can use is len()

•  Download python 3.5.2 from
www.python.org

49	

Program Assignment 1
•  Write your program following the

structure and specs given in the
assignment descriptions
– Define your own stack structure
– Use the specified variables in the template
– Define nested functions
– …

•  Due date: 10/6/16, 12:30pm
•  Submit both an electronic copy via

canvas, and a hard copy in-class
50	

9/22/16	

26	

Reference

[1] Chen Lin, Python Tutorial,
www.cs.brandeis.edu/~cs134/
Python_tutorial.ppt
[2] Global and Local Variables, http://
www.python-course.eu/
global_vs_local_variables.php

51	

