CS-3304 Introduction

In Text: Chapter 1

COURSE DESCRIPTION

8/25/16

What will you learn?

Survey of programming paradigms,
including representative languages

Language definition and description
methods

Overview of features across all
languages

Implementation strategies

Semester Outline

Introduction and Language Evaluation
History and Evolution

Syntax and Semantics

Names, Typing, and Scoping
Expressions and Assignment

Control Structures

Subprograms

Functional & Declarative Languages
Concurrency

8/25/16

8/25/16

Websites

« Course homepage: lecture notes and
schedules

http://courses.cs.vt.edu/cs3304/Fall16/

meng/
« Canvas website: lecture notes,
assignments, grades, and announcements

https://canvas.vt.edu/courses/30688

INTRODUCTION

Overview

Why are there so many programming
languages?

What makes a language successful?
Why study programming languages?

What types of programming languages
are there?

What are language implementation
methods?

What is the process of compilation?

Why are there so many PLs?

Evolution: people have learned better
ways of doing things over fime

Socio-economic factors: proprietary
interests, commercial advantage

Orientation fowards special purposes
Orientation towards special hardware

Diverse ideas about what is pleasant to
use

8/25/16

What makes a language successful?

« Expressive power (C, Algol-68, Perl)
— Easy to express things

— Although every language is Turing complete,
language features have huge impact

— We will focus on factors contributing to
expressive power in the course

* Ease of use (Pascal, Java, Python)
— Easy to learn

What makes a language successful?

* Ease of implementation (BASIC, Forth)

— The languages can be implemented/installed
on tiny machines

« Standardization (ANSI C)

— To ensure portability of code cross
platforms

« Open source (C)

— With at least one open-source compiler or
intferpreter

8/25/16

8/25/16

What makes a language successful?

* Excellent compilers (Fortran, Common
Lisp)
— Possible to compile to very good (fast/
small) code

 Economics, Patronage, and Inertia
— The backing of a powerful sponsor
—E.g., COBOL and Ada by DoD, PL/1 by IBM

Why study PLs?

1. Make it easier to learn new languages

— Some languages are similar; easy to walk
down family tree
* E.g., from Java to C#, from Pascal to C

8/25/16

Why study PLs?

« 2. Choose among alternative ways to
express things based on the knowledge
of implementation costs/performance
overhead

* Use simple arithmetic equivalents (use x*x
instead of x"2)

* Avoid call by value with large data items in
Pascal

Why study PLs?

« 3. Simulate useful features in languages
that lack them

— Certain useful features are missing in some
languages, but can be emulated by following
a deliberate programming style

* E.g., Older dialects of Fortran lack suitable
control structures, so programmers can use
comments and self-discipline to write well-
structured code

Why study PLs?

* 4. Make better use of language
technology whenever it appears

— The code to parse, analyze, generate,
optimize, and otherwise manipulate
structured data can be found in almost any
sophisticated program

— Programmers with a strong grasp of the
language technology will be able to write
better structured and maintainable code

Why study PLs?

« 5. Get prepared to design new languages
or extend existing languages
— Easy-to-use
— Easy-to-learn
— Easy-code-to-maintain

8/25/16

The PL spectrum

 Declarative
— Functional Lisp/Scheme, ML, Haskell
— Dataflow Id, Val
— Logic, constraint-based Prolog, SQL
* Imperative
—von Neumann C, Ada, Fortran
— Object-oriented Smalltalk, Eiffel, Java
— Scripting Perl, Python, PHP

17

Declarative vs. Imperative

 "High-level” vs. "Low-level”

* Programmers specify "what should be
done" or "steps to do it"

« An example (C#): choose all odd
numbers in a collection

var results = List<int> results = new List<int>();

collection.Where(hum => num % || foreach(var num in collection)

2 1=0); {

if (num % 2 1= 0)
results.Add(hum);

8/25/16

Functional Languages

Employ a computational model based on
recursive definition of functions

Take inspiration from the lambda

calculus

— A program is considered as a function from
inputs to outputs, defined in terms of

simpler functions through a process of
refinements

We will talk a lot about these languages

Dataflow Languages

Model computation as the flow of
information (tokens) among primitive
functional nodes

Provide an inherently parallel model:

— Nodes are triggered by the arrival of input
tokens, and can operate concurrently

8/25/16

10

Logic or Constraint-Based Languages

* Take inspiration from predicate logic

« Model computation as an attempt to find
values that satisfy certain specified
relationships, using goal-directed search
through a list of logical rules

von Neumann Languages

* Most familiar and widely used

* The basic means of computation is the
modification of variables

8/25/16

11

Object-oriented Languages

Closely related to the von Neumann
languages

Have a much more structured and
distributed model of both memory and
computation

Picture computation as interactions
among semi-independent objects, each
of which has both its own internal state
and subroutines to manage that state

Scripting Languages

Emphasize coordinating or “gluing
together” components drawn from some
surrounding context

Support scripts, programs written for a
special run-time environment that
automate the execution of tasks, which
could alternatively be executed one-by-
one by a human creator

8/25/16

12

Language Implementation Methods

« Compilation
* Interpretation
 Hybrid

Compilation

Source program ———> (Compiler >—> Target program

Input —>< Target program >—> Output

* Translate high-level programs to
machine code

« Slow translation
* Fast execution

26

8/25/16

13

Interpretation

Source program ~
Input —

Interpret one statement and then
execute it on a virtual machine

No translation

Slow execution

E.g., Basic

Interpreter > —> Output

27

Compilation vs. Interpretation

« Compilation
— Better performance
* No runtime cost for interpretation
* Program optimization
* Interpretation

— Better diagnosis (with excellent source-
level debugger)

— Earlier diagnosis (execute erroneous
program)

28

8/25/16

14

Hybrid Implementation

Source program ——» (Translator >4> Intermediate program

Intermediate program

>< Virtual machine)—» Output
Input

 Quick start in "Interpretation” mode

« Compile code on hot paths to speed up

— E.g., Just-in-Time (JIT) compiler in Java
Virtual Machine (JVM)

— Dynamic profiling plays the trick

29

Hybrid Implementation (Java)

Java program

(Java compiler) Input

Java byte code ——>(Bytecode interpreter)

: l
C JIT compiler) Output
!

Input—»f\/ Machine language)—»Output

30

8/25/16

15

Implementation Strategies in
Practice

Preprocessing

Library routines and linking
Post-compilation assembly
Source-to-source translation
Bootstrapping

Preprocessing (Basic)

e An initial translator
— to remove comments and white spaces,

—to group characters together into fokens such as
keywords, identifiers, numbers, and symbols,

—to expand abbreviations in the style of a macro
assembler, and

—to identify higher-level syntactic structures,
such as loops ‘and subroutines

s Goal

— To provide an infermediate form that mirrors
the structure of the source, but can be
interpreted more efficiently

8/25/16

16

8/25/16

Preprocessing (C)

« Conditional compilation

— Delete portions of code to allow several
versions of a program to be built from the
same source

17

