
8/25/16	

1	

CS-3304 Introduction

In Text: Chapter 1

COURSE DESCRIPTION

2	

8/25/16	

2	

What will you learn?

•  Survey of programming paradigms,
including representative languages

•  Language definition and description
methods

•  Overview of features across all
languages

•  Implementation strategies

3	

Semester Outline

•  Introduction and Language Evaluation
•  History and Evolution
•  Syntax and Semantics
•  Names, Typing, and Scoping
•  Expressions and Assignment
•  Control Structures
•  Subprograms
•  Functional & Declarative Languages
•  Concurrency

4	

8/25/16	

3	

Websites

•  Course homepage: lecture notes and
schedules

http://courses.cs.vt.edu/cs3304/Fall16/
meng/
•  Canvas website: lecture notes,

assignments, grades, and announcements
https://canvas.vt.edu/courses/30688

5	

INTRODUCTION

6	

8/25/16	

4	

Overview

•  Why are there so many programming
languages?

•  What makes a language successful?
•  Why study programming languages?
•  What types of programming languages

are there?
•  What are language implementation

methods?
•  What is the process of compilation?

7	

Why are there so many PLs?

•  Evolution: people have learned better
ways of doing things over time

•  Socio-economic factors: proprietary
interests, commercial advantage

•  Orientation towards special purposes
•  Orientation towards special hardware
•  Diverse ideas about what is pleasant to

use

8	

8/25/16	

5	

What makes a language successful?

•  Expressive power (C, Algol-68, Perl)
– Easy to express things
– Although every language is Turing complete,

language features have huge impact
– We will focus on factors contributing to

expressive power in the course
•  Ease of use (Pascal, Java, Python)
– Easy to learn

9	

What makes a language successful?

•  Ease of implementation (BASIC, Forth)
– The languages can be implemented/installed

on tiny machines
•  Standardization (ANSI C)
– To ensure portability of code cross

platforms
•  Open source (C)
– With at least one open-source compiler or

interpreter
10	

8/25/16	

6	

What makes a language successful?

•  Excellent compilers (Fortran, Common
Lisp)
– Possible to compile to very good (fast/

small) code
•  Economics, Patronage, and Inertia
– The backing of a powerful sponsor
– E.g., COBOL and Ada by DoD, PL/1 by IBM

11	

Why study PLs?

•  1. Make it easier to learn new languages
– Some languages are similar; easy to walk

down family tree
•  E.g., from Java to C#, from Pascal to C

12	

8/25/16	

7	

Why study PLs?

•  2. Choose among alternative ways to
express things based on the knowledge
of implementation costs/performance
overhead

•  Use simple arithmetic equivalents (use x*x
instead of x^2)
•  Avoid call by value with large data items in

Pascal

13	

Why study PLs?

•  3. Simulate useful features in languages
that lack them
– Certain useful features are missing in some

languages, but can be emulated by following
a deliberate programming style
•  E.g., Older dialects of Fortran lack suitable

control structures, so programmers can use
comments and self-discipline to write well-
structured code

14	

8/25/16	

8	

Why study PLs?

•  4. Make better use of language
technology whenever it appears
– The code to parse, analyze, generate,

optimize, and otherwise manipulate
structured data can be found in almost any
sophisticated program

– Programmers with a strong grasp of the
language technology will be able to write
better structured and maintainable code

15	

Why study PLs?

•  5. Get prepared to design new languages
or extend existing languages
– Easy-to-use
– Easy-to-learn
– Easy-code-to-maintain
– … …

16	

8/25/16	

9	

The PL spectrum

•  Declarative
– Functional Lisp/Scheme, ML, Haskell
– Dataflow Id, Val
– Logic, constraint-based Prolog, SQL

•  Imperative
– von Neumann C, Ada, Fortran
– Object-oriented Smalltalk, Eiffel, Java
– Scripting Perl, Python, PHP

17	

Declarative vs. Imperative

•  “High-level” vs. “Low-level”
•  Programmers specify “what should be

done” or “steps to do it”
•  An example (C#): choose all odd

numbers in a collection

18	

List<int> results = new List<int>();
foreach(var num in collection)
{
 if (num % 2 != 0)
 results.Add(num);
}

var results =
collection.Where(num => num %
2 != 0);

8/25/16	

10	

Functional Languages

•  Employ a computational model based on
recursive definition of functions

•  Take inspiration from the lambda
calculus
– A program is considered as a function from

inputs to outputs, defined in terms of
simpler functions through a process of
refinements

•  We will talk a lot about these languages
19	

Dataflow Languages

•  Model computation as the flow of
information (tokens) among primitive
functional nodes

•  Provide an inherently parallel model:
– Nodes are triggered by the arrival of input

tokens, and can operate concurrently

20	

8/25/16	

11	

Logic or Constraint-Based Languages

•  Take inspiration from predicate logic
•  Model computation as an attempt to find

values that satisfy certain specified
relationships, using goal-directed search
through a list of logical rules

21	

von Neumann Languages

•  Most familiar and widely used
•  The basic means of computation is the

modification of variables

22	

8/25/16	

12	

Object-oriented Languages

•  Closely related to the von Neumann
languages

•  Have a much more structured and
distributed model of both memory and
computation

•  Picture computation as interactions
among semi-independent objects, each
of which has both its own internal state
and subroutines to manage that state

23	

Scripting Languages

•  Emphasize coordinating or “gluing
together” components drawn from some
surrounding context

•  Support scripts, programs written for a
special run-time environment that
automate the execution of tasks, which
could alternatively be executed one-by-
one by a human creator

24	

8/25/16	

13	

Language Implementation Methods

•  Compilation
•  Interpretation
•  Hybrid

25	

Compilation

•  Translate high-level programs to
machine code

•  Slow translation
•  Fast execution

26	

8/25/16	

14	

Interpretation

•  Interpret one statement and then
execute it on a virtual machine

•  No translation
•  Slow execution
•  E.g., Basic

27	

Compilation vs. Interpretation

•  Compilation
– Better performance
•  No runtime cost for interpretation
•  Program optimization

•  Interpretation
– Better diagnosis (with excellent source-

level debugger)
– Earlier diagnosis (execute erroneous

program)

28	

8/25/16	

15	

Hybrid Implementation

•  Quick start in “Interpretation” mode
•  Compile code on hot paths to speed up
– E.g., Just-in-Time (JIT) compiler in Java

Virtual Machine (JVM)
– Dynamic profiling plays the trick

29	

30	

Hybrid Implementation (Java)

8/25/16	

16	

Implementation Strategies in
Practice

•  Preprocessing
•  Library routines and linking
•  Post-compilation assembly
•  Source-to-source translation
•  Bootstrapping

31	

Preprocessing (Basic)

•  An initial translator
– to remove comments and white spaces,
– to group characters together into tokens such as

keywords, identifiers, numbers, and symbols,
– to expand abbreviations in the style of a macro

assembler, and
– to identify higher-level syntactic structures,

such as loops and subroutines
•  Goal
– To provide an intermediate form that mirrors

the structure of the source, but can be
interpreted more efficiently

32	

8/25/16	

17	

Preprocessing (C)

•  Conditional compilation
– Delete portions of code to allow several

versions of a program to be built from the
same source

33	

